integration (x^2+1)/(x^4+x^2+1)

Calculus Level 3

0 x 2 + 1 x 4 + x 2 + 1 d x = ? \int_0^\infty \frac {x^2+1}{x^4+x^2+1} dx = \ ?


The answer is 1.8138.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

I = 0 x 2 + 1 x 4 + x 2 + 1 d x = 0 x 2 + 1 ( x 2 + x + 1 ) ( x 2 x + 1 ) d x = 1 2 0 ( 1 x 2 + x + 1 + 1 x 2 x + 1 ) d x = 2 3 ( 0 d x ( 2 x + 1 3 ) 2 + 1 + 0 d x ( 2 x 1 3 ) 2 + 1 d x ) Let tan θ 2 x ± 1 3 sec 2 θ = 2 3 d x = 1 3 ( 0 π 2 d θ + 0 π 2 d θ ) = π 3 1.81 \begin{aligned} I & = \int_0^\infty \frac {x^2+1}{x^4+x^2+1} dx \\ & = \int_0^\infty \frac {x^2+1}{(x^2+x+1)(x^2-x+1)} dx \\ & = \frac 12 \int_0^\infty \left(\frac 1{x^2+x+1} + \frac 1{x^2-x+1} \right) dx \\ & = \frac 23 \left(\int_0^\infty \frac {dx}{\left(\frac {2x+1}{\sqrt 3}\right)^2+1} + \int_0^\infty \frac {dx}{\left(\frac {2x-1}{\sqrt 3}\right)^2+1} dx \right) & \small \blue{\text{Let }\tan \theta \frac {2x \pm 1}{\sqrt 3} \implies \sec^2 \theta = \frac 2{\sqrt 3} dx} \\ & = \frac 1{\sqrt 3} \left( \int_0^\frac \pi 2 d\theta + \int_0^\frac \pi 2 d\theta \right) \\ & = \frac \pi {\sqrt 3} \approx \boxed{1.81} \end{aligned}

Factorising the denominator we get the indefinite integral as

1 2 ( d x x 2 + x + 1 + d x x 2 x + 1 ) \dfrac {1}{2}\left (\displaystyle \int \frac{dx}{x^2+x+1}+\displaystyle \int \frac{dx}{x^2-x+1}\right )

= 1 2 ( 2 tan 1 ( 2 x + 1 3 ) 3 + 2 tan 1 ( 2 x 1 3 ) 3 ) + C =\dfrac {1}{2}\left (\dfrac{2\tan^{-1} (\frac{2x+1}{\sqrt 3})}{\sqrt 3}+\dfrac {2\tan^{-1}(\frac{2x-1}{\sqrt 3})}{\sqrt 3}\right )+C

Hence the value of the definite integral is π 3 1.813799 \dfrac {π}{\sqrt 3}\approx \boxed {1.813799} .

Here is a bit different from othere two.

0 x 2 + 1 x 4 + x 2 + 1 d x \int _0^\infty \dfrac{x^2+1}{x^4+x^2+1}{d}x

= 0 1 + 1 x 2 x 2 + 1 + 1 x 2 d x =\int_0^\infty \dfrac{1+\frac{1}{x^2}}{x^2+1+\frac{1}{x^2}}{d}x

= 0 1 + 1 x 2 ( x 1 x ) 2 + 3 d x =\int_0^\infty \dfrac{1+\frac{1}{x^2}}{(x-\frac{1}{x})^2+3}{d}x

= 1 t 2 + 3 d t = \int_{-\infty}^{\infty} \dfrac{1}{t^2+3}{d}t {Put ( x 1 x ) = t (x-\frac{1}{x}) = t }

= 1 3 arctan x ( 3 ) =\dfrac{1}{\sqrt{3}}\left.\arctan\frac{x}{\sqrt(3)}\right|_-\infty^\infty

= π 3 1 / 2 =\dfrac{\pi}{3^1/2} \blacksquare

ps.. I had the heck of a time typing the latex myself.

@Admins please enable the toggle Latex feature again.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...