Integration+Differentation

Calculus Level 3

0 1 4 x 3 ( d 2 d x 2 ( 1 x 2 ) 5 ) d x = ? \large \int _{ 0 }^{ 1 }{ { 4 }{ x }^{ 3 }\left( \frac { d^{ 2 } }{ { d }{ { x }^{ 2 } } } { { \left( { 1 }-{ x }^{ 2 } \right) }^{ 5 } } \right) } { dx }=?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 20, 2018

I = 0 1 4 x 3 d 2 d x 2 ( 1 x 2 ) 5 d x By integration by parts. = 4 x 3 d d x ( 1 x 2 ) 5 12 x 2 d d x ( 1 x 2 ) 5 d x 0 1 = 4 x 3 5 ( 1 x 2 ) 4 ( 2 x ) 12 x 2 ( 1 x 2 ) 5 + 24 x ( 1 x 2 ) 5 d x 0 1 Let x = sin θ d x = cos θ d θ = 0 0 + 24 0 π 2 sin θ cos 11 θ d θ Let u = cos θ d u = cos θ d θ = 24 0 1 u 11 d u = 24 × u 12 12 0 1 = 2 \begin{aligned} I & = \int_0^1 4x^3 \cdot \frac {d^2}{dx^2}\left(1-x^2\right)^5 dx & \small \color{#3D99F6} \text{By integration by parts.} \\ & = 4x^3\cdot \frac d{dx} (1-x^2)^5 - 12 \int x^2 \cdot \frac d{dx} (1-x^2)^5 dx \bigg|_0^1 \\ & = 4x^3\cdot 5(1-x^2)^4\cdot(-2x) - 12 x^2 (1-x^2)^5 + 24 {\color{#3D99F6}\int x(1-x^2)^5 dx} \bigg|_0^1 & \small \color{#3D99F6} \text{Let }x = \sin \theta \implies dx = \cos \theta \ d\theta \\ & = 0 - 0 + 24 \color{#3D99F6}\int_0^\frac \pi 2 \sin \theta \cos^{11} \theta \ d\theta & \small \color{#3D99F6} \text{Let }u = \cos \theta \implies du = - \cos \theta \ d\theta \\ & = 24 \int_0^1 u^{11} \ du \\ & = 24 \times \frac {u^{12}}{12} \bigg|_0^1 \\ & = \boxed{2} \end{aligned}


Previous solution

I = 0 1 4 x 3 d 2 d x 2 ( 1 x 2 ) 5 d x = 0 1 4 x 3 d 2 d x 2 ( 1 5 x 2 + 10 x 4 10 x 6 + 5 x 8 x 10 ) d x = 0 1 4 x 3 d d x ( 10 x + 40 x 3 60 x 5 + 40 x 7 10 x 9 ) d x = 0 1 4 x 3 ( 10 + 120 x 2 300 x 4 + 280 x 6 90 x 8 ) d x = 0 1 ( 40 x 3 + 480 x 5 1200 x 7 + 1120 x 9 360 x 11 ) d x = 10 x 4 + 80 x 6 150 x 8 + 112 x 10 30 x 12 0 1 = 10 + 80 150 + 112 30 = 2 \begin{aligned} I & = \int_0^1 4x^3 \cdot \frac {d^2}{dx^2}\left(1-x^2\right)^5 dx \\ & = \int_0^1 4x^3 \cdot \frac {d^2}{dx^2}\left(1-5x^2+10x^4-10x^6+5x^8-x^{10}\right) dx \\ & = \int_0^1 4x^3 \cdot \frac d{dx}\left(-10x+40x^3-60x^5+40x^7-10x^9\right) dx \\ & = \int_0^1 4x^3 \left(-10+120x^2-300x^4+280x^6-90x^8\right) dx \\ & = \int_0^1 \left(-40x^3+480x^5-1200x^7+1120x^9-360x^{11}\right) dx \\ & = -10x^4+80x^6-150x^8+112x^{10}-30x^{12}\ \bigg|_0^1 \\ & = -10 + 80 - 150 + 112- 30 \\ & = \boxed{2} \end{aligned}

@Ayush Mishra , I redo the LaTex of the problem for you.

Chew-Seong Cheong - 3 years, 2 months ago

Log in to reply

thank you sir

A Former Brilliant Member - 3 years, 2 months ago

Sir can you do it without expansion

A Former Brilliant Member - 3 years, 2 months ago

Log in to reply

Thanks for the suggestion. I have done it.

Chew-Seong Cheong - 3 years, 2 months ago

Log in to reply

Sir I had also done in the same way

A Former Brilliant Member - 3 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...