Integration. No, it's differentiation!

Calculus Level 3

lim x 0 1 x ( y a e sin 2 ( t ) d t x + y a e sin 2 ( t ) d t ) = ? \large \lim_{x \to 0} \frac 1x \left(\int_y^a e^{\sin^2(t)} dt - \int_{x+y}^a e^{\sin^2(t)} dt \right)= ?

e sin 2 ( y ) \Large e^{\sin^2 (y)} e cos ( 2 y ) \Large e^{\cos(2y)} e 2 sin ( y ) \Large e^{2\sin(y)} e csc 2 ( y ) \Large e^{\csc^2(y)}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 27, 2019

Similar solution with @Krishnendu Roy's

Let F ( x ) = 0 x e sin 2 t d t \displaystyle F(x) = \int_0^x e^{\sin^2 t} dt . Then we have:

L = lim x 0 1 x ( y a e sin 2 t d t x + y a e sin 2 t d t ) = lim x 0 1 x ( F ( a ) F ( y ) F ( a ) + F ( x + y ) ) Replace x with h = lim h 0 F ( y + h ) F ( y ) h which is the definition of differentiation. = d F ( y ) d y = e sin 2 y \begin{aligned} L & = \lim_{x \to 0} \frac 1x \left(\int_y^a e^{\sin^2 t} dt - \int_{x+y}^a e^{\sin^2 t} dt \right) \\ & = \lim_{x \to 0} \frac 1x \left(F(a) - F(y) -F(a) + F(x+y) \right) & \small \color{#3D99F6} \text{Replace }x \text{ with }h \\ & = \lim_{h \to 0} \frac {F(y+h) - F(y)}h & \small \color{#3D99F6} \text{which is the definition of differentiation.} \\ & = \frac {d F(y)}{dy} \\ & = \boxed{e^{\sin^2 y}} \end{aligned}

Krishnendu Roy
May 27, 2019

after simplifying above equation we get

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...