Integration+Trigonometry

Calculus Level 4

0 a tan 1 x d x = 0 a cot 1 x d x \large \int_0^a \left \lfloor \tan^{-1} \sqrt x \right\rfloor dx = \int_0^a \left \lfloor \cot^{-1} \sqrt x \right\rfloor dx

A constant a = p ( q + cos r ) s cos t > 0 a = \dfrac {p(q+\cos r)}{s - \cos t} > 0 satisfies the equation above. Find p + q + r + s + t p+q+r+s+t .

Notation: \lfloor \cdot \rfloor denotes the floor function .


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Joseph Newton
Mar 17, 2018

Consider where the function tan 1 x \tan^{-1}\sqrt x equals 1: tan 1 x = 1 x = tan 2 1 2.43 \tan^{-1}\sqrt x=1\\ x=\tan^2 1\approx2.43 The function is 0 at x=0, and as x approaches infinity, the function approaches π 2 1.57 \frac{\pi}{2}\approx1.57 . Since tan 1 x \tan^{-1}\sqrt x is a monotonically increasing function, which we can tell from the derivative 1 2 x ( 1 + x ) \frac{1}{2\sqrt x(1+x)} , we know that for 0 x < tan 2 1 0\leq x<\tan^2 1 the floor of the function is 0, and for x tan 2 1 x\geq\tan^2 1 the floor of the function is 1: tan 1 x = { 0 0 x < tan 2 1 1 x tan 2 1 \left\lfloor\tan^{-1}{\sqrt{x}}\right\rfloor=\begin{cases} 0&0\leq x<\tan^2 1\\ 1&x\geq\tan^2 1\end{cases} Now we do the same with the other function.

Consider where the function cot 1 x \cot^{-1}\sqrt x equals 1: cot 1 x = 1 x = cot 2 1 0.41 \cot^{-1}\sqrt x=1\\ x=\cot^2 1\approx0.41 The function is π 2 1.57 \frac{\pi}{2}\approx1.57 at x=0, and as x approaches infinity, the function approaches 0. Since cot 1 x \cot^{-1}\sqrt x is a monotonically decreasing function, which we can tell from the derivative 1 2 x ( 1 + x ) \frac{-1}{2\sqrt x(1+x)} , we know that for 0 x < cot 2 1 0\leq x<\cot^2 1 the floor of the function is 1, and for x cot 2 1 x\geq\cot^2 1 the floor of the function is 0: cot 1 x = { 1 0 x < cot 2 1 0 x cot 2 1 \left\lfloor\cot^{-1}{\sqrt{x}}\right\rfloor=\begin{cases} 1&0\leq x<\cot^2 1\\ 0&x\geq\cot^2 1\end{cases} Here is a graph of these two functions. tan 1 x \left\lfloor\tan^{-1}{\sqrt{x}}\right\rfloor is shown in blue while cot 1 x \left\lfloor\cot^{-1}{\sqrt{x}}\right\rfloor is shown in red. We want to pick a value of a so that the areas under these graphs between 0 and a are equal. Intuitively, this is the black line shown in the graph at x = tan 2 1 + cot 2 1 x=\tan^2 1+\cot^2 1 , so that the two rectangles enclosed by each graph are equal in size.

Now it's just a matter of rearranging the answer using the power reduction formula for cos: a = tan 2 1 + cot 2 1 = sec 2 1 + csc 2 1 2 = sin 2 1 + cos 2 1 sin 2 1 cos 2 1 2 = 1 2 sin 2 1 cos 2 1 sin 2 1 cos 2 1 = 1 2 1 2 ( 1 cos 2 ) 1 2 ( 1 + cos 2 ) 1 2 ( 1 cos 2 ) 1 2 ( 1 + cos 2 ) = 2 + 2 cos 2 2 1 cos 2 2 = 2 + 2 1 2 ( 1 + cos 4 ) 1 1 2 ( 1 + cos 4 ) = 2 ( 3 + cos 4 ) 1 cos 4 \begin{aligned}a&=\tan^2 1+\cot^2 1\\ &=\sec^2 1+\csc^2 1-2\\\\ &=\frac{\sin^2 1+\cos^2 1}{\sin^2 1\cdot\cos^2 1}-2\\ &=\frac{1-2\sin^2 1\cdot\cos^2 1}{\sin^2 1\cdot\cos^2 1}\\ &=\frac{1-2\cdot\frac{1}{2}(1-\cos2)\cdot\frac{1}{2}(1+\cos2)}{\frac{1}{2}(1-\cos2)\cdot\frac{1}{2}(1+\cos2)}\\ &=\frac{2+2\cos^2 2}{1-\cos^2 2}\\ &=\frac{2+2\cdot\frac{1}{2}(1+\cos4)}{1-\cdot\frac{1}{2}(1+\cos4)}\\ &=\frac{2(3+\cos4)}{1-\cos4}\end{aligned} So the answer is 2 + 3 + 4 + 1 + 4 = 14 2+3+4+1+4=\boxed{14}

Very Nice Solution

A Former Brilliant Member - 3 years, 2 months ago
Chew-Seong Cheong
Mar 18, 2018

First consider

I = 0 a tan 1 x d x Let u 2 = x 2 u d u = d x = 0 a 2 tan 1 u u d u = 2 0 tan 1 tan 1 u u d u + 2 tan 1 a tan 1 u u d u = 0 + 2 tan 1 a u d u for a < tan 2 = a tan 2 1 \begin{aligned} I & = \int_0^a \left \lfloor \tan^{-1} \sqrt x\right \rfloor dx & \small \color{#3D99F6} \text{Let }u^2 = x \implies 2u \ du = dx \\ & = \int_0^{\sqrt a} 2\left \lfloor \tan^{-1} u \right \rfloor u\ du \\ & = 2 \int_0^{\tan 1} \left \lfloor \tan^{-1} u \right \rfloor u\ du + 2 \int_{\tan 1}^{\sqrt a} \left \lfloor \tan^{-1} u \right \rfloor u\ du \\ & = 0 + 2 \int_{\tan 1}^{\sqrt a} u\ du & \small \color{#3D99F6} \text{for }\sqrt a < \tan 2 \\ & = a - \tan^2 1 \end{aligned}

Similarly,

I = 0 a cot 1 x d x = 0 a π 2 tan 1 x d x = 2 0 a π 2 tan 1 u u d u = 2 0 tan ( π 2 1 ) u d u Note that tan ( π 2 1 ) < tan 1 = tan 2 ( π 2 1 ) = cot 2 1 \begin{aligned} I & = \int_0^a \left \lfloor \cot^{-1} \sqrt x\right \rfloor dx \\ & = \int_0^a \left \lfloor \frac \pi 2 - \tan^{-1} \sqrt x\right \rfloor dx \\ & = 2 \int_0^{\sqrt a} \left \lfloor \frac \pi 2 - \tan^{-1} u \right \rfloor u\ du \\ & = 2 \int_0^{\tan \left(\frac \pi 2-1\right)} u\ du & \small \color{#3D99F6} \text{Note that }\tan \left(\frac \pi 2-1\right) < \tan 1 \\ & = \tan^2 \left(\frac \pi 2-1\right) \\ & = \cot^2 1 \end{aligned}

Then we have:

a tan 2 1 = cot 2 1 a = 1 tan 2 1 + tan 2 1 = cos 2 1 sin 2 1 + sin 2 1 cos 2 1 Note that cos 2 θ = 1 + cos 2 θ 2 , sin 2 θ = 1 cos 2 θ 2 = 1 + cos 2 1 cos 2 + 1 cos 2 1 + cos 2 = 2 ( 1 + cos 2 2 ) 1 cos 2 2 = 2 ( 3 2 + 1 2 cos 4 ) 1 2 1 2 cos 4 = 2 ( 3 + cos 4 ) 1 cos 4 \begin{aligned} a - \tan^2 1 & = \cot^2 1 \\ \implies a & = \frac 1{\tan^2 1} + \tan^2 1 \\ & = \frac {\cos^2 1}{\sin^2 1} + \frac {\sin^2 1}{\cos^2 1} & \small \color{#3D99F6} \text{Note that }\cos^2 \theta = \frac {1+\cos 2\theta}2,\ \sin^2 \theta = \frac {1-\cos 2\theta }2 \\ & = \frac {1+\cos 2}{1-\cos 2} + \frac {1-\cos 2}{1+\cos 2} \\ & = \frac {2\left(1+\cos^2 2\right)}{1-\cos^2 2} \\ & = \frac {2\left(\frac 32+\frac 12 \cos 4\right)}{\frac 12-\frac 12\cos 4} \\ & = \frac {2\left(3+\cos 4\right)}{1-\cos 4} \end{aligned}

Therefore, p + q + r + s + t = 2 + 3 + 4 + 1 + 4 = 14 p+q+r+s+t = 2+3+4+1+4 = \boxed{14} .

@Ayush Mishra , I edited your problem again.

Chew-Seong Cheong - 3 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...