Find the sum of all the real solutions of the equation above. Give your answer correct to 3 decimal places.
Notations:
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
⌊ x ⌋ 1 + ⌊ 2 x ⌋ 1 ⟹ 3 1 ≤ ⌊ x ⌋ 1 = { x } + 3 1 + ⌊ 2 x ⌋ 1 < 3 4 Note that 0 ≤ { x } < 1
To satisfy the inequality, x must be positive and ⌊ x ⌋ > 0 . Note that for x > 0 , ⌊ 2 x ⌋ = 2 ⌊ x ⌋ + ⌊ 2 { x } ⌋ = { 2 ⌊ x ⌋ 2 ⌊ x ⌋ + 1 if { x } < 2 1 if { x } ≥ 2 1 and ⌊ x ⌋ 1 + ⌊ 2 x ⌋ 1 = ⎩ ⎪ ⎨ ⎪ ⎧ ⌊ x ⌋ 1 + 2 ⌊ x ⌋ 1 ⌊ x ⌋ 1 + 2 ⌊ x ⌋ + 1 1 if { x } < 2 1 if { x } ≥ 2 1 . Then we have:
For 1 ≤ x < 2 ⟹ ⌊ x ⌋ 1 + ⌊ 2 x ⌋ 1 = { 2 3 3 4 if { x } < 2 1 if { x } ≥ 2 1 ≥ 3 4 No solution.
For 2 ≤ x < 3 ⟹ ⌊ x ⌋ 1 + ⌊ 2 x ⌋ 1 = { 4 3 1 0 7 if { x } < 2 1 if { x } ≥ 2 1 ⟹ { x } = { 4 3 − 3 1 = 1 2 5 < 2 1 1 0 7 − 3 1 = 3 0 1 1 < 2 1 ⟹ x = 2 1 2 5 Rejected
For 3 ≤ x < 4 ⟹ ⌊ x ⌋ 1 + ⌊ 2 x ⌋ 1 = { 2 1 2 1 1 0 if { x } < 2 1 if { x } ≥ 2 1 ⟹ { x } = { 2 1 − 3 1 = 6 1 < 2 1 2 1 1 0 − 3 1 = 7 1 < 2 1 ⟹ x = 3 6 1 Rejected
For 4 ≤ x < 5 ⟹ ⌊ x ⌋ 1 + ⌊ 2 x ⌋ 1 = { 8 3 3 6 1 3 if { x } < 2 1 if { x } ≥ 2 1 ⟹ { x } = { 8 3 − 3 1 = 2 4 1 < 2 1 3 6 1 3 − 3 1 = 3 6 1 < 2 1 ⟹ x = 4 2 4 1 Rejected
For 5 ≤ x < 6 ⟹ ⌊ x ⌋ 1 + ⌊ 2 x ⌋ 1 = { 1 0 3 5 5 1 6 if { x } < 2 1 if { x } ≥ 2 1 < 3 1 No solution. As ⌊ x ⌋ 1 + ⌊ 2 x ⌋ 1 decreases with x , this implies that there is no more solution for x ≥ 5 .
Therefore, the sum of solution is 2 1 2 5 + 3 6 1 + 4 2 4 1 = 9 8 5 = 9 . 6 2 5 .