Interacting with Floors

Algebra Level 4

1 x + 1 2 x = { x } + 1 3 \large \dfrac{1}{\lfloor x \rfloor} + \dfrac{1}{\lfloor 2x \rfloor} = \{ x \} + \dfrac 13

Find the sum of all the real solutions of the equation above. Give your answer correct to 3 decimal places.

Notations:


The answer is 9.625.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

1 x + 1 2 x = { x } + 1 3 Note that 0 { x } < 1 1 3 1 x + 1 2 x < 4 3 \begin{aligned} \frac 1{\lfloor x \rfloor} + \frac 1{\lfloor 2x \rfloor} & = {\color{#3D99F6}\{ x \}} + \frac 13 & \small \color{#3D99F6} \text{Note that }0 \le \{x\} < 1 \\ \implies \frac 13 \le \frac 1{\lfloor x \rfloor} & + \frac 1{\lfloor 2x \rfloor} < \frac 43 \end{aligned}

To satisfy the inequality, x x must be positive and x > 0 \lfloor x \rfloor > 0 . Note that for x > 0 x>0 , 2 x = 2 x + 2 { x } = { 2 x if { x } < 1 2 2 x + 1 if { x } 1 2 \lfloor 2x \rfloor = 2\lfloor x \rfloor + \lfloor 2\{x\}\rfloor = \begin{cases} 2\lfloor x \rfloor & \text{if }\{x\} < \frac 12 \\ 2\lfloor x \rfloor + 1 & \text{if }\{x\} \ge \frac 12 \end{cases} and 1 x + 1 2 x = { 1 x + 1 2 x if { x } < 1 2 1 x + 1 2 x + 1 if { x } 1 2 \dfrac 1{\lfloor x \rfloor} + \dfrac 1{\lfloor 2x \rfloor} = \begin{cases} \dfrac 1{\lfloor x \rfloor} + \dfrac 1{2 \lfloor x \rfloor} & \text{if }\{x\} < \frac 12 \\ \dfrac 1{\lfloor x \rfloor} + \dfrac 1{2 \lfloor x \rfloor+1} & \text{if }\{x\} \ge \frac 12 \end{cases} . Then we have:

For 1 x < 2 1 x + 1 2 x = { 3 2 if { x } < 1 2 4 3 if { x } 1 2 4 3 No solution. 1 \le x < 2\implies \dfrac 1{\lfloor x \rfloor} + \dfrac 1{\lfloor 2x \rfloor} = \begin{cases} \color{#D61F06} \frac 32 & \text{if }\{x\} < \frac 12 \\ \color{#D61F06} \frac 43 & \text{if }\{x\} \ge \frac 12 \end{cases} \color{#D61F06} \ \ge \frac 43 \text{ No solution.}

For 2 x < 3 1 x + 1 2 x = { 3 4 if { x } < 1 2 7 10 if { x } 1 2 2 \le x < 3 \implies \dfrac 1{\lfloor x \rfloor} + \dfrac 1{\lfloor 2x \rfloor} = \begin{cases} \frac 34 & \text{if }\{x\} < \frac 12 \\ \frac 7{10} & \text{if }\{x\} \ge \frac 12 \end{cases} { x } = { 3 4 1 3 = 5 12 < 1 2 x = 2 5 12 7 10 1 3 = 11 30 < 1 2 Rejected \implies \{x\} = \begin{cases} \frac 34 - \frac 13 = \color{#3D99F6} \frac 5{12} < \frac 12 & \color{#3D99F6} \implies x = 2\frac 5{12} \\ \frac 7{10} - \frac 13 = \color{#D61F06} \frac {11}{30} < \frac 12 & \color{#D61F06} \text{Rejected} \end{cases}

For 3 x < 4 1 x + 1 2 x = { 1 2 if { x } < 1 2 10 21 if { x } 1 2 3 \le x < 4 \implies \dfrac 1{\lfloor x \rfloor} + \dfrac 1{\lfloor 2x \rfloor} = \begin{cases} \frac 12 & \text{if }\{x\} < \frac 12 \\ \frac {10}{21} & \text{if }\{x\} \ge \frac 12 \end{cases} { x } = { 1 2 1 3 = 1 6 < 1 2 x = 3 1 6 10 21 1 3 = 1 7 < 1 2 Rejected \implies \{x\} = \begin{cases} \frac 12 - \frac 13 = \color{#3D99F6} \frac 16 < \frac 12 & \color{#3D99F6} \implies x = 3\frac 16 \\ \frac {10}{21} - \frac 13 = \color{#D61F06} \frac 17 < \frac 12 & \color{#D61F06} \text{Rejected} \end{cases}

For 4 x < 5 1 x + 1 2 x = { 3 8 if { x } < 1 2 13 36 if { x } 1 2 4 \le x < 5 \implies \dfrac 1{\lfloor x \rfloor} + \dfrac 1{\lfloor 2x \rfloor} = \begin{cases} \frac 38 & \text{if }\{x\} < \frac 12 \\ \frac {13}{36} & \text{if }\{x\} \ge \frac 12 \end{cases} { x } = { 3 8 1 3 = 1 24 < 1 2 x = 4 1 24 13 36 1 3 = 1 36 < 1 2 Rejected \implies \{x\} = \begin{cases} \frac 38 - \frac 13 = \color{#3D99F6} \frac 1{24} < \frac 12 & \color{#3D99F6} \implies x = 4\frac 1{24} \\ \frac {13}{36} - \frac 13 = \color{#D61F06} \frac 1{36} < \frac 12 & \color{#D61F06} \text{Rejected} \end{cases}

For 5 x < 6 1 x + 1 2 x = { 3 10 if { x } < 1 2 16 55 if { x } 1 2 < 1 3 No solution. 5 \le x < 6 \implies \dfrac 1{\lfloor x \rfloor} + \dfrac 1{\lfloor 2x \rfloor} = \begin{cases} \color{#D61F06} \frac 3{10} & \text{if }\{x\} < \frac 12 \\ \color{#D61F06} \frac {16}{55} & \text{if }\{x\} \ge \frac 12 \end{cases} \color{#D61F06} \ < \frac 13 \text{ No solution.} As 1 x + 1 2 x \dfrac 1{\lfloor x \rfloor} + \dfrac 1{\lfloor 2x \rfloor} decreases with x x , this implies that there is no more solution for x 5 x \ge 5 .

Therefore, the sum of solution is 2 5 12 + 3 1 6 + 4 1 24 = 9 5 8 = 9.625 2\frac 5{12}+3\frac 16 + 4\frac 1{24} = 9\frac 58 = \boxed{9.625} .

Beautiful.!

Vilakshan Gupta - 3 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...