Trigonometry! #8

Geometry Level 3

If tan ( π cos θ ) = cot ( π sin θ ) \tan(\pi \cos \theta) = \cot (\pi \sin \theta) and 0 < θ < 3 π 4 0 < \theta < \frac {3 \pi }{4} , then sin ( θ + π 4 ) = ? \sin (\theta + \frac {\pi}{4}) =\ ?

This problem is part of the set Trigonometry .

1 2 2 \frac {1}{2\sqrt{2}} 1 2 -\frac {1}{\sqrt {2}} 1 2 \frac {1}{\sqrt{2}} 1 2 2 -\frac {1}{2\sqrt{2}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Danish Ahmed
Jan 30, 2015

tan ( π cos θ ) = cot ( π sin θ ) \tan (\pi \cos \theta) = \cot (\pi \sin \theta)

So π cos θ = π / 2 π sin θ \pi \cos \theta = \pi / 2 - \pi \sin \theta

or sin θ + cos θ = 1 / 2 \sin \theta + \cos \theta = 1 / 2

or 1 2 sin θ + 1 2 cos θ = 1 2 2 \frac{1}{\sqrt{2}}\sin \theta + \frac{1}{\sqrt{2}}\cos \theta = \frac{1}{2\sqrt{2}}

or sin ( θ + π 4 ) = 1 2 2 \sin (\theta + \frac{\pi}{4}) = \frac{1}{2\sqrt{2}}

I didn't get dat how pi cos x = pi/2 - pi sin x is cos x +sin x = 1/2. Plz guide me

Chaitanya Kulkarni - 6 years, 2 months ago

Log in to reply

tan ( π cos θ ) = cot ( π sin θ ) = cot ( π / 2 π sin θ ) \tan(\pi\cos\theta)=\cot(\pi\sin\theta)=\cot(\pi/2-\pi\sin\theta)

Danish Ahmed - 6 years, 1 month ago

Solved very neatly.! great..:-)

Anurag Pandey - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...