Interesting Ceiling and Floors

Algebra Level 4

Find the number of pairs of positive integers ( x , y ) (x,y) satisfying

x + y x 2 + y 2 x + y = ( x + y ) 2 x 2 + y 2 + 3. \left \lfloor \dfrac{x+y}{x^2}\right \rfloor + \left \lceil \dfrac{y^2}{x+y} \right \rceil = \left \lfloor \dfrac{(x+y)^2}{x^2+y^2} \right \rfloor + 3 .

There is no solution A solution exist, and there are finitely many solutions There are infinitely many solutions

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

David Vreken
Nov 30, 2020

Let x = 4 k ( k + 1 ) x = 4k(k + 1) and y = 4 ( k + 1 ) y = 4(k + 1) for k > 1 k > 1 . Then x + y = 4 ( k + 1 ) 2 x + y = 4(k + 1)^2 and:

x + y x 2 = 4 ( k + 1 ) 2 16 k 2 ( k + 1 ) 2 = 1 4 k 2 = 0 \left \lfloor \dfrac{x + y}{x^2} \right \rfloor = \left \lfloor \dfrac{4(k + 1)^2}{16k^2(k + 1)^2} \right \rfloor = \left \lfloor \dfrac{1}{4k^2} \right \rfloor = 0

y 2 x + y = 16 ( k + 1 ) 2 4 ( k + 1 ) 2 = 4 \left \lceil \dfrac{y^2}{x + y} \right \rceil = \left \lceil \dfrac{16(k + 1)^2}{4(k + 1)^2} \right \rceil = 4

( x + y ) 2 x 2 + y 2 = 16 ( k + 1 ) 4 16 k 2 ( k + 1 ) 2 + 16 ( k + 1 ) 2 = ( k + 1 ) 2 k 2 + 1 = k 2 + 2 k + 1 k 2 + 1 = 1 + 2 k k 2 + 1 = 1 \left \lfloor \dfrac{(x + y)^2}{x^2 + y^2} \right \rfloor = \left \lfloor \dfrac{16(k + 1)^4}{16k^2(k + 1)^2 + 16(k + 1)^2} \right \rfloor = \left \lfloor \dfrac{(k + 1)^2}{k^2 + 1} \right \rfloor = \left \lfloor \dfrac{k^2 + 2k + 1}{k^2 + 1} \right \rfloor = \left \lfloor 1 + \dfrac{2k}{k^2 + 1} \right \rfloor = 1

Therefore, for any k > 1 k > 1 ,

x + y x 2 + y 2 x + y = ( x + y ) 2 x 2 + y 2 + 3 0 + 4 = 1 + 3 \left \lfloor \dfrac{x + y}{x^2} \right \rfloor + \left \lceil \dfrac{y^2}{x + y} \right \rceil = \left \lfloor \dfrac{(x + y)^2}{x^2 + y^2} \right \rfloor + 3 \Longrightarrow 0 + 4 = 1 + 3

which is a true statement, so there are infinitely many solutions .

Lovro Cupic
Dec 1, 2020

x , y = int ( 2 x ) x\to \infty, \: y=\text{int}( 2\sqrt{x}) also works. First term is 0, second is 4 and right side is 4 for x y x\neq y as others have explained.

Naufal Fadil
Nov 29, 2020

The text below the graph just reads that for x>6 is empty, so I didn't include it. Let me know if You have some suggestions and constructive criticism. I'm open, Thanks :D

K T
Jan 5, 2021

The right hand side expression can be written as 2 x y x 2 + y 2 + 4 \lfloor \frac{2xy}{x^2+y^2} \rfloor + 4 .

Because ( x y ) 2 0 (x-y)^2 \ge 0 we see that x 2 + y 2 2 x y x^2+y^2 \ge 2xy , and the floor evaluates to 1 when x=y and vanishes otherwise.

Sidenote: for x = y x=y the equation becomes 2 x + x 2 = 5 \lfloor \frac{2}{x} \rfloor+ \lceil \frac{x}{2} \rceil=5 with solutions ( x , y ) { ( 9 , 9 ) ( 10 , 10 ) } (x,y) \in \{ (9,9)(10,10)\} .

Now Suppose x y x \ne y

we want to solve x + y x 2 + y 2 x + y = 4 \lfloor \frac{x+y}{x^2}\rfloor + \lceil \frac{y^2}{x+y} \rceil\ = 4

To keep the 2nd term y 2 x + y \lceil \frac{y^2}{x+y} \rceil from getting larger than 4 we need x 1 4 y 2 y x\ge \frac14 y^2 - y

Choosing y > 8 y>8 implies that x > y x>y and the first term x + y x 2 \lfloor \frac{x+y}{x^2}\rfloor vanishes. The only remaining condition is 3 < y 2 x + y 4 3 \lt \frac{y^2}{x+y} \le 4 or y 2 4 y x < y 2 3 y \frac{y^2}{4}-y \le x \lt \frac{y^2}{3}-y

The size of the interval is y 2 12 \frac {y^2}{12} . So to any y > 8 y>8 we can find at least 5 values of x.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...