Interesting (double...) series !

Calculus Level 3

For any integer n 1 n \geq 1 let d ( n ) d(n) be the greatest odd divisor of n n .

For example, d ( 4 ) = 1 , d ( 30 ) = 15 d(4)=1, \ d(30)=15 and d ( 21 ) = 21 d(21)=21 .

Compute n = 1 + 1 n d ( n ) \displaystyle \sum_{n=1}^{+\infty}\dfrac{1}{nd(n)}

e ln ( 5 2 ) e\ln\left(\dfrac{5}{2}\right) π 2 4 \dfrac{\pi^2}{4} 12 5 \dfrac{12}{5} 2 + 1 \sqrt{2}+1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Théo Leblanc
Aug 13, 2019

The key idea to solve this problem is that for any positive integer n n and any strictly positive odd integer k , d ( 2 n k ) = k k, \ d(2^n k)=k .

I will denote the set of all the odd positive integer as I \mathbb{I} (i for "impair", odd in french, not a conventional notation).

You probably know that the function bellow is a bijection (it is a consequence of the fundamental theorem of arithmetic):

φ : N × I N ( n , k ) 2 n k \begin{array}{lrcl} \varphi : & \mathbb{N}\times\mathbb{I} & \longrightarrow & \mathbb{N^*} \\ & (n,k) & \longmapsto & 2^n k \end{array}

Therefore,

n = 1 + 1 n d ( n ) = ( n , k ) N × I 1 2 n k × k = k I n = 0 + 1 2 n k 2 = k I 2 k 2 = 2 n = 1 + 1 n 2 2 n = 1 + 1 ( 2 n ) 2 = 2 n = 1 + 1 n 2 1 2 n = 1 + 1 n 2 = 3 2 n = 1 + 1 n 2 = 3 2 × π 2 6 = π 2 4 \begin{aligned} \displaystyle \sum_{n=1}^{+\infty} \dfrac{1}{nd(n)} & = \displaystyle \sum_{(n,k)\in \mathbb{N}\times\mathbb{I}} \dfrac{1}{2^n k \times k} \\ & = \displaystyle \sum_{k\in\mathbb{I}}\sum_{n=0}^{+\infty} \dfrac{1}{2^n k^2} \\ & = \displaystyle \sum_{k\in\mathbb{I}} \dfrac{2}{k^2} \\ & = 2\displaystyle \sum_{n=1}^{+\infty} \dfrac{1}{n^2} - 2\displaystyle \sum_{n=1}^{+\infty} \dfrac{1}{(2n)^2}\\ & = 2\displaystyle \sum_{n=1}^{+\infty} \dfrac{1}{n^2} - \dfrac{1}{2}\displaystyle \sum_{n=1}^{+\infty} \dfrac{1}{n^2}\\ & = \dfrac{3}{2} \displaystyle \sum_{n=1}^{+\infty} \dfrac{1}{n^2}\\ & = \dfrac{3}{2} \times \dfrac{\pi^2}{6}\\ & = \boxed{\dfrac{\pi^2}{4}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...