Let and be integers satisfying the equation above. Find the sum of all distinct values of .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Relevant wiki: Diophantine Equations - Solve by Factoring
From x + y + z = 3 we get x = 3 − y − z
Then 3 = x 3 + y 3 + z 3 = ( 3 − y − z ) 3 + y 3 + z 3 = 2 7 − 2 7 y + 9 y 2 − 2 7 z + 1 8 y z − 3 y 2 z + 9 z 2 − 3 y z 2
⟹ 2 4 = 2 7 y − 9 y 2 + 2 7 z − 9 z 2 − 1 8 y z + 3 y z 2 + 3 y 2 z
⟹ 8 = 9 y − 3 y 2 + 9 z − 3 z 2 − 6 y z + y z 2 + y 2 z
⟹ 8 = ( 3 − z ) ( y + z ) ( 3 − y ) (1)
So 3 − z is a divisor (positive or negative) of 8
Then 3 − z ∈ {1, 2, 4, 8, -1, -2, -4, -8} ⟹ z ∈ {11, 7, 5, 4, 2, 1, -1, -5}
Analogously x ∈ {11, 7, 5, 4, 2, 1, -1, -5} and y ∈ {11, 7, 5, 4, 2, 1, -1, -5}
We also know from equation 1 that y + z is also a divisor of 8 and analogously x + z and y + x are also divisors of 8. So for any pair of numbers we choose from {11, 7, 5, 4, 2, 1, -1, -5} their sum must be a divisor of 8.
The only triples formed with these numbers that satisfy that any pairwise sum is a divisor of 8 are:
( 7 , 1 , 1 ) , ( 7 , − 5 , 1 ) , ( 5 , − 1 , − 1 ) , ( 4 , 4 , 4 ) , ( 4 , 4 , − 5 ) , ( 2 , 2 , 2 ) , ( 2 , 2 , − 1 ) , ( 2 , − 1 , − 1 ) , ( 1 , 1 , 1 ) , ( 1 , 1 , − 5 ) , ( − 1 , − 1 , − 1 )
From which the only ones that add up to 3 are:
( 7 , − 5 , 1 ) , ( 5 , − 1 , − 1 ) , ( 4 , 4 , − 5 ) , ( 2 , 2 , − 1 ) , ( 1 , 1 , 1 )
From which the only ones whose cubes add up to 3 are:
( 4 , 4 , − 5 ) and ( 1 , 1 , 1 )
So the only possible values of x y z are 4 × 4 × − 5 = − 8 0 and 1 × 1 × 1 = 1 which add up to − 7 9