Interesting improper integral with 3rd order derivative.

Calculus Level 3

[https://www.facebook.com/photo.php?fbid=1762871440524943&set=a.104229213055849&type=3&theater)


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chris Lewis
May 30, 2019

This is an application of Leibniz's rule - ie, differentiating under the integral sign (a favourite trick of Richard Feynman, no less!)

As it stands, the integral looks (and is) pretty horrific. The trick is to differentiate wrt n n first ; the integrand is a cubic polynomial in n n , so its third derivative is just 6 6 times the coefficient of n 3 n^3 in the integrand.

The integral we actually need is I = 0 6 1 + π 2 x 2 d x I=\int_0^{\infty} \frac{6}{1+\pi^2 x^2} dx which can easily be worked out (the indefinite integral is just an inverse tangent) to be 3 \boxed3 .

Please, see also Chris Lewis's solution. This is just a an expansion of it.

0 ( n + sin ( x ) x ) 3 π 2 x 2 + 1 d x n 3 2 3 2 e 1 / π π n 2 + 3 π n 2 2 + 3 4 e 2 / π π 2 n 3 π 2 n 4 + 3 π n 2 1 8 e 3 / π π 3 + 3 8 e 1 / π π 3 π 3 4 + 3 π 8 \int_0^{\infty } \frac{\left(n+\frac{\sin (x)}{x}\right)^3}{\pi ^2 x^2+1} \, dx \Rightarrow \\ \frac{n^3}{2}-\frac{3}{2} e^{-1/\pi } \pi n^2+\frac{3 \pi n^2}{2}+\frac{3}{4} e^{-2/\pi } \pi ^2 n-\frac{3 \pi ^2 n}{4}+\frac{3 \pi n}{2}-\frac{1}{8} e^{-3/\pi } \pi ^3+\frac{3}{8} e^{-1/\pi } \pi ^3-\frac{\pi ^3}{4}+\frac{3 \pi }{8}

( n 3 2 3 2 e 1 / π π n 2 + 3 π n 2 2 + 3 4 e 2 / π π 2 n 3 π 2 n 4 + 3 π n 2 1 8 e 3 / π π 3 + 3 8 e 1 / π π 3 π 3 4 + 3 π 8 ) n 3 n 2 2 3 e 1 / π π n + 3 π n + 3 4 e 2 / π π 2 3 π 2 4 + 3 π 2 \frac{\partial \left(\frac{n^3}{2}-\frac{3}{2} e^{-1/\pi } \pi n^2+\frac{3 \pi n^2}{2}+\frac{3}{4} e^{-2/\pi } \pi ^2 n-\frac{3 \pi ^2 n}{4}+\frac{3 \pi n}{2}-\frac{1}{8} e^{-3/\pi } \pi ^3+\frac{3}{8} e^{-1/\pi } \pi ^3-\frac{\pi ^3}{4}+\frac{3 \pi }{8}\right)}{\partial n} \Rightarrow \\ \frac{3 n^2}{2}-3 e^{-1/\pi } \pi n+3 \pi n+\frac{3}{4} e^{-2/\pi } \pi ^2-\frac{3 \pi ^2}{4}+\frac{3 \pi }{2}

( 3 n 2 2 3 e 1 / π π n + 3 π n + 3 4 e 2 / π π 2 3 π 2 4 + 3 π 2 ) n 3 n 3 e 1 / π π + 3 π \frac{\partial \left(\frac{3 n^2}{2}-3 e^{-1/\pi } \pi n+3 \pi n+\frac{3}{4} e^{-2/\pi } \pi ^2-\frac{3 \pi ^2}{4}+\frac{3 \pi }{2}\right)}{\partial n} \Rightarrow 3 n-3 e^{-1/\pi } \pi +3 \pi

( 3 n 3 e 1 / π π + 3 π ) n 3 \frac{\partial \left(3 n-3 e^{-1/\pi } \pi +3 \pi \right)}{\partial n} \Rightarrow 3

Starting with the expansion of the integrand, doing the problem as Chirs Lewis actually did the problem.

n 3 π 2 x 2 + 1 + 3 n 2 sin ( x ) x ( π 2 x 2 + 1 ) + 3 n sin 2 ( x ) x 2 ( π 2 x 2 + 1 ) + sin 3 ( x ) x 3 ( π 2 x 2 + 1 ) \frac{n^3}{\pi ^2 x^2+1}+\frac{3 n^2 \sin (x)}{x \left(\pi ^2 x^2+1\right)}+\frac{3 n \sin ^2(x)}{x^2 \left(\pi ^2 x^2+1\right)}+\frac{\sin ^3(x)}{x^3 \left(\pi ^2 x^2+1\right)}

3 n 2 π 2 x 2 + 1 + 6 n sin ( x ) x ( π 2 x 2 + 1 ) + 3 sin 2 ( x ) x 2 ( π 2 x 2 + 1 ) \frac{3 n^2}{\pi ^2 x^2+1}+\frac{6 n \sin (x)}{x \left(\pi ^2 x^2+1\right)}+\frac{3 \sin ^2(x)}{x^2 \left(\pi ^2 x^2+1\right)}

6 π 2 x 2 + 1 \frac{6}{\pi ^2 x^2+1}

6 1 π 2 x 2 + 1 d x 6 tan 1 ( π x ) π x = 0 x = 6 ( 1 2 0 ) 3 6\,\int \frac{1}{\pi ^2 x^2+1} \, dx \Rightarrow 6\frac{\tan ^{-1}(\pi x)}{\pi }|_{x=0}^{x=\infty} \Rightarrow 6(\frac12-0) \Rightarrow 3

Added 2019 June 6 1330Z (D-Day 75th anniversary). {\color{#EC7300} \text{Added 2019 June 6 1330Z (D-Day 75th anniversary).}}

The indefinite integral:

1 4 π ( 4 n sinh ( 1 π ) Ci ( i π x ) + 4 n sinh ( 1 π ) Ci ( i π + x ) i cosh ( 2 π ) Ci ( 2 i π + 2 x ) + i cosh ( 2 π ) Ci ( 2 i π 2 x ) + 4 n 2 tan 1 ( π x ) + 4 i n cosh ( 1 π ) Si ( i π x ) + 4 i n cosh ( 1 π ) Si ( i π + x ) + sinh ( 2 π ) Si ( 2 i π + 2 x ) sinh ( 2 π ) Si ( 2 i π 2 x ) + 2 tan 1 ( π x ) ) \frac{1}{4 \pi}(4 n \sinh \left(\frac{1}{\pi }\right) \text{Ci}\left(\frac{i}{\pi }-x\right)+4 n \sinh \left(\frac{1}{\pi }\right) \text{Ci}\left(\frac{i}{\pi }+x\right)-i \cosh \left(\frac{2}{\pi }\right) \text{Ci}\left(\frac{2 i}{\pi }+2 x\right)+i \cosh \left(\frac{2}{\pi }\right) \text{Ci}\left(\frac{2 i}{\pi }-2 x\right)+ \\ 4 n^2 \tan ^{-1}(\pi x)+4 i n \cosh \left(\frac{1}{\pi }\right) \text{Si}\left(\frac{i}{\pi }-x\right)+4 i n \cosh \left(\frac{1}{\pi }\right) \text{Si}\left(\frac{i}{\pi }+x\right)+\sinh \left(\frac{2}{\pi }\right) \text{Si}\left(\frac{2 i}{\pi }+2 x\right)-\sinh \left(\frac{2}{\pi }\right) \text{Si}\left(\frac{2 i}{\pi }-2 x\right)+ \\ 2 \tan ^{-1}(\pi x))

Assuming that z R > 0 ( z ) 0 , Ci ( z ) = z cos ( t ) t d t z\in \mathbb{R}_{>\, 0}\lor \Im(z)\neq 0,\, \text{Ci}(z)=-\int_z^{\infty } \frac{\cos (t)}{t} \, dt .

Si ( z ) = 1 2 ( π 2 z sin ( t ) t d t ) \text{Si}(z) = \frac{1}{2} (\pi -2 \int_z^{\infty } \frac{\sin (t)}{t} \, dt) .

These special functions can be developed by taking the Maclaurin series for the respective trigonometric series, doing the division by t t and doing the integration from z to infinity on each term individually and then reassembling the new series. This is done for otherwise undoable integrations.

Evaluating the indefinite integral at 0 gives:

8 n Shi ( 1 π ) cosh ( 1 π ) + 8 Ci ( i π ) n sinh ( 1 π ) 4 π \frac{-8 n \text{Shi}\left(\frac{1}{\pi }\right) \cosh \left(\frac{1}{\pi }\right)+8 \text{Ci}\left(\frac{i}{\pi }\right) n \sinh \left(\frac{1}{\pi }\right)}{4 \pi }

Evaluating the indefinite integral at \infty gives:

2 π n 2 + 4 i π n sinh ( 1 π ) + π + π sinh ( 2 π ) π cosh ( 2 π ) 4 π \frac{2 \pi n^2+4 i \pi n \sinh \left(\frac{1}{\pi }\right)+\pi +\pi \sinh \left(\frac{2}{\pi }\right)-\pi \cosh \left(\frac{2}{\pi }\right)}{4 \pi }

The point is: this is unnecessary! See Chris Lewis’s much simpler solution. {\large\color{#D61F06} \text{The point is: this is unnecessary! See Chris Lewis's much simpler solution.}}

How did you evaluate the integral in the first place????

Aaghaz Mahajan - 2 years ago

I added material to my explanation.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...