Interesting Incircle

Geometry Level 4

A B C ABC is a triangle with B A C = 6 0 \angle BAC = 60^\circ . It has an incircle Γ \Gamma , which is tangential to B C BC at D D . It is given that B D = 3 BD = 3 and D C = 4 DC = 4 . What is the value of [ A B C ] 2 [ABC]^2 ?

Details and assumptions

[ P Q R S ] [PQRS] denotes the area of figure P Q R S PQRS .


The answer is 432.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

14 solutions

David Xu
May 20, 2014

B C = B D + D C = 7 BC = BD + DC = 7 . Let E E and F F denote the points of tangency of the incircle on segments A C AC and A B AB , respectively. Let A E = A F = x AE = AF = x . By the Law of Cosines, we have

B C 2 = A B 2 + A C 2 2 ( A B ) ( A C ) ( cos A ) BC^2 = AB^2 + AC^2 - 2(AB)(AC)(\cos A) \Rightarrow 7 2 = ( x + 3 ) 2 + ( x + 4 ) 2 2 ( x + 3 ) ( x + 4 ) ( cos 60 ) 7^2 = (x+3)^2 + (x+4)^2 - 2(x+3)(x+4)(\cos 60)

Simplifying yields x 2 + 7 x = 36 x^2 + 7x = 36 .

[ A B C ] = ( A B ) ( A C ) ( sin A ) 2 = ( x + 3 ) ( x + 4 ) ( sin 60 ) 2 = [ABC] = \frac{(AB)(AC)(\sin A)}{2} = \frac{(x+3)(x+4)(\sin 60)}{2} = ( x 2 + 7 x + 12 ) 3 4 = ( 36 + 12 ) 3 4 = 12 3 \frac{(x^2 + 7x + 12)\sqrt{3}}{4} = \frac{(36 + 12)\sqrt{3}}{4} = 12\sqrt{3}

Thus, [ A B C ] 2 = 432 [ABC]^2 = \boxed{432} .

In this solution, you should also check that your roots make sense. In particular, you should ensure that there is a positive real root which corresponds to the side of the triangle.

Another approach calculates the inradius using the equation

tan 1 r 3 + tan 1 r 4 = 3 \tan^{-1} \frac{r}{3} + \tan^{-1} \frac{r}{4} = \sqrt{3}

Calvin Lin Staff - 7 years ago
Lawrence Limesa
May 20, 2014

Let the incircle tangential to A C AC at E E and tangential to A B AB at F F

Note that B F O D BFOD , D O E C DOEC and A F O E AFOE are all kites so we have that

B D = B F , A F = A E , C E = C D BD= BF, AF = AE, CE = CD

and let A F AF be x x so the length of the triangles are A B = x + 3 , B C = 7 , C A = x + 4 AB= x+3 , BC = 7 , CA = x+4

By Cosine Rule, A B 2 + A C 2 2 × A B × A C × c o s B A C = B C 2 AB^2 + AC^2 - 2 \times AB \times AC\times cos \angle BAC = BC^2

( x + 3 ) 2 + ( x + 4 ) 2 2 × ( x + 3 ) × ( x + 4 ) × c o s 6 0 = 7 2 (x+3)^2 + (x+4)^2 - 2 \times(x+3)\times(x+4) \times cos 60^\circ = 7^2

x 2 + 6 x + 9 + x 2 + 8 x + 16 2 × ( x 2 + 7 x + 12 ) × 1 2 = 49 x^2 + 6x +9 + x^2 + 8x + 16 - 2 \times(x^2 + 7x + 12) \times \frac{1}{2}=49

x 2 + 7 x + 13 = 49 x 2 + 7 x 36 = 0 x^2+7x+13 = 49 \rightarrow x^2 + 7x -36 =0

x 1 , 2 = 7 ± 7 2 4 ( 1 ) ( 36 ) 2 ( 1 ) x_{1,2} = \frac{-7 \pm \sqrt{7^2-4(1)(-36)}}{2(1)} \rightarrow x 1 , 2 = 7 ± 193 2 x_{1,2} = \frac{-7 \pm \sqrt{193}}{2} ,

x = 7 193 2 x= \frac{-7 - \sqrt{193}}{2} is disqualified because x x must be more than 0.

so x = 7 + 193 2 x= \frac{-7 + \sqrt{193}}{2}

[ A B C ] = 1 2 × A B × A C × s i n ( B A C ) [ABC] = \frac{1}{2} \times AB \times AC \times sin(\angle BAC)

[ A B C ] = 1 2 × ( 7 + 193 2 + 3 ) × ( 7 + 193 2 + 4 ) × 3 2 [ABC] = \frac{1}{2} \times (\frac{-7 + \sqrt{193}}{2}+3)\times(\frac{-7 + \sqrt{193}}{2}+4)\times\frac{\sqrt{3}}{2}

[ A B C ] = 432 [ABC] = \sqrt{432}

Hence [ A B C ] 2 = 432 [ABC]^2 = 432

Reilton Bernardes
May 20, 2014

Sejam E,F as projeções ortogonais do centro I do incírculo nos segmentos AB e AC, respectivamente.

Os triângulos EIB e DIB são congruentes. Os triângulos DIC e FIC são congruentes. Os triângulos AIE e AIF são congruentes.

Portanto, EB=BD=3, FC=DC=4 e AE=AF = x

Aplicando a Lei dos Cossenos no triângulo ABC, temos:

7² = (3+x)² + (4+x)² - 2.(0.5)(3+x)(4+x) x²+7x-36=0 e como x é positivo, então:

x = (-7 + \sqrt(139) )/2

Pela Lei das Áreas, a área do triângulo ABC é :

[ABC] = (3+x)(4+x)sin(60º)/2

Substituindo o valor de x encontrado:

[ABC] = 12.sqrt(3)

Portanto, [ABC]² = 12² . 3 = 432

Step1 : Let E,F be the point of tangency on CA and AB respectively. Let, AF=AE = 'x' We have AB = x+3 and AC= x+4 in that case and BC= 7

Step 2: Apply Cosine Rule and you get (x+3)^2 + (x+4)^2 - 49 = 2 * cos60 * (x +3)*(x+4)

Simplifying u get : x^2 + 7x -36 = 0 ---eq 1

Solving we get x= 3.44

Step 3: Appy Sine formula for Area

[ABC] = 1/2 * AB AC *sin60 = 1/2 *(x+3) (x+4)* sqrt3 /2

[ABC] = sqrt 3 /4 * (x^2 + 7x+12) = sqrt 3 /4 * 48 (from eq1) = sqrt 3 *12

Hence, [ABC]^2 = 144 *3 = 432

Wei Jie Tan
May 20, 2014

Let the centre of the Γ \Gamma be O O .

Let the radius of the Γ \Gamma be r r

Let the Γ \Gamma be tangential to A B AB and A C AC at E E and F F respectively

Let s s be half of the perimeter of Δ A B C \Delta ABC

O B OB = O B OB

O E OE = r r = O D OD

O E B \angle OEB = 9 0 90^\circ = O D B \angle ODB

Δ O E B Δ O D B \therefore \Delta OEB \cong \Delta ODB

E B EB = B D BD = 3 3

O C OC = O C OC

O D OD = r r = O F OF

O D C \angle ODC = 9 0 90^\circ = O F C \angle OFC

Δ O D C Δ O E C \therefore \Delta ODC \cong \Delta OEC

E C EC = D C DC = 4 4

O A OA = O A OA

O E OE = r r = O F OF

O E A \angle OEA = 9 0 90^\circ = O F A \angle OFA

Δ O E A Δ O F A \therefore \Delta OEA \cong \Delta OFA

O A E \angle OAE = O A F \angle OAF = 1 2 ( E A F ) \frac{1}{2}(\angle EAF) = 3 0 30^\circ

\therefore O A OA = 2 O E 2\cdot OE = 2 r 2r

A F AF = A E AE = O A 2 O E 2 \sqrt{OA^2 - OE^2} = 4 r 2 r 2 \sqrt{4r^2 - r^2} = 3 r 2 \sqrt{3r^2} = 3 r \sqrt{3} \cdot r

s s = A B + B C + A C 2 \frac{AB + BC + AC}{2} = A B + E B + B D + D C + E C + A E 2 \frac{AB+EB+BD+DC+EC+AE}{2} = 3 r + 3 + 3 + 4 + 4 + 3 r 2 \frac{\sqrt{3} \cdot r + 3 + 3 + 4 + 4 + \sqrt{3} \cdot r}{2} = 7 + 3 r 7 + \sqrt{3} \cdot r

By Heron's Formula , we have

( s ) ( 7 + 3 r ( 3 + 3 r ) ) ( 7 + 3 r 7 ) ( 7 + 3 r ( 4 + 3 r ) ) \sqrt{(s)( 7 + \sqrt{3} \cdot r - (3 + \sqrt{3} \cdot r))( 7 + \sqrt{3} \cdot r - 7)( 7 + \sqrt{3} \cdot r - (4 + \sqrt{3} \cdot r))}

= A r e a o f Δ A B C Area of \Delta ABC = s r s \cdot r

( s ) ( 4 ) ( 3 r ) ( 3 ) (s)(4)(\sqrt{3} \cdot r)(3) = ( s r ) 2 (s \cdot r)^2

12 s ( 3 r ) 12 \cdot s \cdot (\sqrt{3} \cdot r) = s 2 r 2 s^2 \cdot r^2

12 3 12 \sqrt{3} = s r sr

( A r e a o f Δ A B C ) 2 (Area of \Delta ABC)^2 = s r 2 sr^2 = ( 12 3 ) 2 (12 \sqrt{3})^2 = 432

Siddharth Kumar
May 20, 2014

consider triangle ABC in clockwise order(Order of vertex does not matter). Let Incircle touches sides AC and AB at E and F respectively. Then clearly BD=BF=3,CD=CE=4,AE=AF=x(say).(Because length of tangents from a point on circle is equal.) Now From Cosine Rule Cosine(BAC)=(AB^2+AC^2-BC^2)/2(AB AC). Putting lengths of sides in this equation gives x^2+7x=36. Area of Triange ABC=(1/2) AB AC Sin(60)=1/2 (x+3) (x+4) sin60= 1/2 (x^2+7x+12) (sqrt(3)/2) .Putting value of x^2+7x=36. We get [ABC]=12 sqrt(3). So [ABC]^2=432

Jay Joshi
May 20, 2014

Let point of contact of incircle Γ with AB and AC be E and F . As , BD = 3 => BE = 3 (because tangents are drawn from B to incircle Γ , So length of tangents are equal ) , same for CD = 4 => CF = 4 . Let , AF = AE = k . So , AB = k+3 , AC = k+4 & BC = 7 . Using Law of cosine for ∠BAC , $ cos(BAC) = (1/2) = [ (AB)^2 + (AC)^2 - (BC)^2] / (2 AC AB) $ ∴ $ (k+3)^2 + (k+4)^2 - 7^2 = (k+3)(k+4) $
$ k^2 + 7k - 36 = 0 . $ Two solutions are there , we are interested in positive one , $ k = \frac{1}{2} (-7 + \sqrt(193)) $
$ AB = \frac{1}{2} (-1 + \sqrt(193)) , AC = \frac{1}{2} (1 + \sqrt(193)) $

We now have three sides of triangle . We can use Heron's Formula for Area of Triangle , $ AB = c , BC = a , AC = b $ there are many ways of writing heron's formula one of them is as below : [ABC] = $ \frac{1}{4} \sqrt( (a^{2} + b^{2} + c^{2} )^{2} - 2(a^{4} + b^{4} + c^{4} ) ) .

$ b^{2} + c^{2} = (b+c)^{2} - 2bc = 97 $ $ b^{4} + c^{4} = (b^{2} + c^{2})^{2} - 2 (bc)^{2} = 4801 $
Thus , $ [ABC]^2 = \frac{1}{16} ( 6912) = 432 . $

Nhat Le
May 20, 2014

Let I be the center of the circle and r be the radius. We have angle ABC + angle ACB = 120, so angle IBC + angle ICD = 60 Also tanIBC = r/3 tanICD = r/4 tan(60-IBC)=r/4 (tan60 - tanIBC) / (1+tan60tanIBC) = r/4 (tan60 - r/3) / (1 + tan60r/3) = r/4

Solving for r we get r = (-7sqrt(3) + sqrt(579)) / 6

Let E and F be the points where the circle touches AB and AC respectively

Then AE = AF = r / tan30 AB = r/tan30 + 3 AC = r/tan30 +4

Thus area of ABC = 0.5 AB ACsin60 = 432

Ankit Goel
May 20, 2014

Let the incircle touch AB at M and AC at N. Let AM = x. Since, tangents from same point are equal. AN = AM = x BM = BD=3 CN=CD=4 s(semiperimeter) = (14+2x)/2 =7+x Area = 1/2 bc sinA = \sqrt{3}/4*(3+x)(4+x) radius of incircle = area/s Let the center of incircle be O. In right triangle AOM. x = r cot(60/2) = r \sqrt{3} but r = area/s Hence, x = 3/4 * (3+x)(4+x)/(7+x) Crossmultiplying and simplifying x^2 +7x -36 =0 or x^2 +7x =36 (i)

Now, area = \sqrt{3}/4 (x^2+7x+12) = \sqrt{3}/4 (0+48) = 12 \sqrt{3} (area)^2 = 144*3 = 432. QED

Need to discard other root.

Calvin Lin Staff - 7 years ago

Let ABC be a triangle with ∠ BAC = 60 degrees.

Let Γ be incircle of triangle ABC.

Let D , E , F be points of intersection of incircle with sides BC , CA and

AB respectively.

AE = AF , BD = BF , CD = CE.

Let AE = AF = x.

Therefore , AB = x + 3 , AC = x +4 , BD = 3 , DC = 4.

From cosine rule ,

Cos A = ( Sqr(AB) + Sqr(AC) - Sqr(BC) ) / 2 * AB * AC

( Sqr (x) = x * x )

=> Cos 60 = ( Sqr(x+3) + Sqr(x+4) - Sqr (7) )/ 2 * (x+3) * (x+4)

=> 0.5 * 2 * ( Sqr(x) +7x +12 ) = 2 * Sqr (x) + 14x +25 - 49

=> Sqr(x) +7x +12 = 2*Sqr(x) +14x +- 24

=> Sqr(x) + 7x - 36 = 0

Therefore , x = ( - 7 + Root( Sqr(7) - 4 * 1 * (-36)) ) / 2*1

( Eg.Root(49) = 7 )

x = ( -7 + Root(193) ) / 2

Therefore , AB = x + 3 = ( Root(193) - 1 ) / 2

                AC = x + 4 = ( Root(193) + 1 ) / 2

So , Area of triangle ABC = (1/2) * AB * AC * Sin60

= (0.5) * (( Root(193) - 1 ) / 2) * (( Root(193) + 1 ) / 2) * Sin60

= (0.5) * (( Sqr(Root(193)) -1) / 4) * Sin60

=((193-1)/8) * Sin60

=(192/8) * Sin60

=(24) * Sin60

Therefore ,

Sqr(Area of Triangle ABC) = Sqr( 24* Sin60 )

                                           = 576 * Sqr(Root(3)/2)

                                           = 576 * 3 / 4 

                                           = 144 * 3

                                           = 432 .
黎 李
May 20, 2014

7r/(12-r^2)=sqrt(3), S=r(sqrt(3)r+7)=12sqrt(3)

Michael Tong
May 20, 2014

The first important thing to note is that the intersections of an incircle split sides A B , B C , AB, BC, and A C AC into lengths of x x and y , y y, y and z z , and x x and z z , respectively. Let E E be the intersection of the incircle and side A B AB , and let F F be the intersection of the incircle on side A C AC . Thus, E B = E D = 3 , D C = F C = 4 , EB = ED = 3, DC = FC = 4, and A E = A F . AE = AF.

Next, using the information that the incircle is formed by the angle bisectors and that B A C = 6 0 \angle BAC = 60 ^ \circ , we get that A E = A F = r 3 AE = AF = r \sqrt{3} .

With this information, we can set up two equations to find the area and equate them together, namely that A = s r = s ( s a ) ( s b ) ( s c ) A = sr = \sqrt{s(s - a)(s - b)(s - c)} , where s s is the semiperimeter. Substituting in the appropriate values for s , a , b , s, a, b, and c c and solving for r r , we come to r = 193 7 2 3 r = \frac {\sqrt {193} - 7}{2 \sqrt {3}} . Substituting this value of r back into either of the equations to find Area and squaring we come to the surprisingly clean number of 432 , our final answer.

Calvin Lin Staff
May 13, 2014

Solution 1: Let the distance from A A to the circle be y y . Applying cosine rule to B A C \angle BAC , we get that cos 6 0 = ( y + 3 ) 2 + ( y + 4 ) 2 7 2 2 ( y + 3 ) ( y + 4 ) \cos 60^\circ = \frac{ (y+3)^2 + (y+4)^2 - 7^2} { 2 (y+3)(y+4) } , or that y = 7 + 193 2 y = \frac { -7 + \sqrt{193} } {2} (ignore negative root).

This allows us to calculate the area using the sine rule formula, giving

[ A B C ] = 1 2 ( y + 3 ) ( y + 4 ) sin 6 0 = 1 2 193 1 2 193 + 1 2 3 2 = 192 3 16 . [ABC] = \frac{1}{2} (y+3)(y+4) \sin 60^\circ = \frac{1}{2} \cdot \frac{ \sqrt{193}-1} {2} \cdot \frac{\sqrt{193} + 1} {2} \cdot \frac{ \sqrt{3} }{2} = \frac{ 192 \sqrt{3} } {16}.

Thus, [ A B C ] 2 = 432 [ABC]^2 = 432 .

Solution 2: We will use various formulas for the geometric measurements.

Let the corresponding lengths of the triangle are a , b , c a, b, c , and the corresponding angles be α , β , γ \alpha, \beta, \gamma .
The semi perimeter is a + b + c 2 \frac{a+b+c}{2} .
Heron's formula states that [ A B C ] = s ( s a ) ( s b ) ( s c ) [ABC] = \sqrt{ s (s-a) (s-b) (s-c) } .
The radius of the incircle is r = [ A B C ] s = ( s a ) ( s b ) ( s c ) s r = \frac{ [ABC] } { s } = \sqrt{ \frac{(s-a)(s-b)(s-c) } { s} } .
Let E E be the tangent between Γ \Gamma and A C AC .
We have B D = s c BD = s-c , C D = s b CD = s-b and A E = s a AE = s-a .
Then tan α 2 = r A E = ( s b ) ( s c ) s ( s a ) \tan { \frac{\alpha} {2} } = \frac{ r} { AE} = \sqrt{ \frac { (s-b)(s-c) } { s (s-a) } } .





Hence, we can calculate that [ A B C ] = ( s b ) ( s c ) tan α 2 = 3 × 4 × 3 . [ABC] = \frac{ (s-b)(s-c) } { \tan \frac{ \alpha} { 2} } = { 3 \times 4 \times \sqrt{3} } . Hence [ A B C ] 2 = 432 [ABC] ^2 = 432 .

Ahmad Saad
Nov 27, 2016

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...