Interesting Inequality

Algebra Level 3

Say that for 'n' real numbers, x 1 , x 2 , . . . , x n { x }_{ 1 },{ x }_{ 2 },...,{ x }_{ n } , the smallest number is 'a', and the largest number is 'b'. If i = 1 n x i = 0 a n d i = 1 n x i 2 = 1 \sum _{ i=1 }^{ n }{ { x }_{ i } } =0\quad and\quad \sum _{ i=1 }^{ n }{ { { x }_{ i } }^{ 2 } } =1 , then a b y ab\le y . What is 'y' in terms of 'n'?

-1/n 1/n -n n

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Nick Lee
Sep 9, 2014

Because 'a' is the smallest number, for any arbitrary real number, x i a 0 { x }_{ i }-a\ge 0 . Similarly, because 'b' is the largest number, for any arbitrary real number, x i b 0 { x }_{ i }-b\le 0 . Multiplying those 2 inequalities gives us ( x i a ) ( x i b ) = x i 2 ( a + b ) x i + a b 0 ({ x }_{ i }-a)({ x }_{ i }-b)={ { x }_{ i } }^{ 2 }-(a+b){ x }_{ i }+ab\le 0 . Therefore, x 1 2 ( a + b ) x 1 + a b 0 , x 2 2 ( a + b ) x 2 + a b 0 , . . . , x n 2 ( a + b ) x n + a b 0 { { x }_{ 1 } }^{ 2 }-(a+b){ x }_{ 1 }+ab\le 0,\quad { { x }_{ 2 } }^{ 2 }-(a+b){ x }_{ 2 }+ab\le 0,...,\quad { { x }_{ n } }^{ 2 }-(a+b){ x }_{ n }+ab\le 0 . Adding all of them gives i = 1 n x i 2 ( a + b ) i = 1 n x i + n a b 0 1 + n a b 0 a b 1 n \sum _{ i=1 }^{ n }{ { { x }_{ i } }^{ 2 } } -(a+b)\sum _{ i=1 }^{ n }{ { x }_{ i } } +nab\le 0\rightarrow 1+nab\le 0\rightarrow ab\le -\frac { 1 }{ n }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...