Interesting Integral

Calculus Level 5

If the value of the integral

0 ( x 2 + 4 ) ln x x 4 + 16 d x \displaystyle\int_{0}^{\infty}\dfrac{(x^{2}+4)\ln x}{x^{4}+16}\text{ }\text{d}x

can be expressed as π ln a b c \dfrac{\pi\ln a}{b\sqrt{c}} where a a is a prime number and c c is square free find a + b + c a+b+c .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Jatin Yadav
Nov 19, 2014

x 4 + 16 = ( x 2 2 2 x + 4 ) ( x 2 + 2 2 x + 4 ) x^4 +16 = (x^2 - 2\sqrt{2} x +4)(x^2+2\sqrt{2} x + 4)

Hence,

I = 0 1 2 ( ln x x 2 2 2 x + 4 + ln x x 2 + 2 2 x + 4 ) d x I = \displaystyle \int_{0}^{\infty} \dfrac{1}{2} \bigg(\dfrac{\ln x }{x^2-2 \sqrt{2} x+ 4} + \dfrac{\ln x}{x^2+ 2\sqrt{2} x+4} \bigg) {\mathrm dx}

Now, Putting x = 2 z x = 2z ,

I = 1 4 0 ( ln 2 + ln z z 2 2 z + 1 + ln 2 + ln z z 2 + 2 z + 1 ) d z \displaystyle I = \dfrac{1}{4} \displaystyle \int_{0}^{\infty} \bigg(\dfrac{\ln 2 + \ln z}{z^2-\sqrt{2} z +1} + \dfrac{\ln 2 + \ln z}{z^2+\sqrt{2} z +1} \bigg) {\mathrm dz}

Now, putting z = 1 t z = \dfrac{1}{t} ,

I = 1 4 0 ( ln 2 ln t t 2 2 t + 1 + ln 2 ln t t 2 + 2 t + 1 ) d t \displaystyle I = \dfrac{1}{4} \displaystyle \int_{0}^{\infty} \bigg(\dfrac{\ln 2 - \ln t}{t^2-\sqrt{2} t +1} + \dfrac{\ln 2 - \ln t}{t^2+\sqrt{2} t +1} \bigg) {\mathrm dt}

Adding these, we get :

I = 0 ln 2 4 ( 0 1 z 2 2 z + 1 d z + 0 1 z 2 + 2 z + 1 d z ) I = \displaystyle \int_{0}^{\infty} \dfrac{\ln 2}{4}\bigg( \int_{0}^{\infty} \dfrac{1}{z^2 - \sqrt{2} z + 1} {\mathrm dz} +\int_{0}^{\infty} \dfrac{1}{z^2+\sqrt{2} z +1} {\mathrm dz} \bigg)

= ln 2 4 ( 3 π 2 2 + π 2 2 ) \dfrac{\ln 2}{4} \bigg(\dfrac{3 \pi}{2 \sqrt{2}} + \dfrac{\pi}{2 \sqrt{2}}\bigg)

= π ln 2 2 2 \boxed{\dfrac{\pi \ln 2}{2 \sqrt{2}}}

We can also directly replace x x by 4 x \dfrac{4}{x} and add the two to simplify our integral ¨ \ddot\smile

Karthik Kannan - 6 years, 6 months ago

Log in to reply

that;s what i did :) . There is also one very similar problem . 0 ln ( x ) x 2 + 2 x + 4 \int_{0}^{\infty} \frac{\ln(x)}{x^2+2x+4}

Shivang Jindal - 6 years, 6 months ago

and @Pranav Arora Come one guys, take part in Brilliant Integration Contest - Season 1 like Jatin, @Sudeep Salgia , and @Ronak Agarwal . (>‿◠)✌

Anastasiya Romanova - 6 years, 6 months ago
Tunk-Fey Ariawan
Nov 18, 2014

Let's start from the formula I derived here : 0 x a 1 1 + x b d x = π b csc ( a π b ) (1) \int_0^\infty\dfrac{x^{\,\large a-1}}{1+x^{\,\large b}}\ dx=\frac{\pi}{b}\csc\left(\frac{a\pi}{b}\right)\qquad\qquad\qquad\tag{1} Setting x = t c x=\frac{t}{c} to ( 1 ) (1) , we have 0 t a 1 c b + t b d t = π b c b a csc ( a π b ) (2) \int_0^\infty\dfrac{t^{\,\large a-1}}{c^{\,\large b}+t^{\,\large b}}\ dt=\frac{\pi}{b\,c^{\,b-a}}\csc\left(\frac{a\pi}{b}\right)\qquad\qquad\qquad\tag{2} Differentiating ( 2 ) (2) with respect to a a yields 0 t a 1 ln ( t ) c b + t b d t = a [ π b c b a csc ( a π b ) ] (3) \int_0^\infty\dfrac{t^{\,\large a-1}\ln(t)}{c^{\,\large b}+t^{\,\large b}}\ dt=\frac{\partial }{\partial a}\left[\frac{\pi}{b\,c^{\,b-a}}\csc\left(\frac{a\pi}{b}\right)\right]\qquad\qquad\qquad\tag{3} Using ( 3 ) (3) to solve the considered integral by setting b = 4 b=4 , c = 2 c=2 , and making substitution t x t\mapsto x , then 0 ( x 2 + 4 ) ln x x 4 + 16 d t = a [ π 4 2 4 a csc ( a π 4 ) ] a = 3 + 4 a [ π 4 2 4 a csc ( a π 4 ) ] a = 1 = π ln 2 2 2 \begin{aligned}\int_0^\infty\dfrac{\left(x^{2}+4\right)\ln x}{x^4+16}\ dt&=\frac{\partial }{\partial a}\left[\frac{\pi}{4\cdot2^{\,4-a}}\csc\left(\frac{a\pi}{4}\right)\right]_{a=3}+4\frac{\partial }{\partial a}\left[\frac{\pi}{4\cdot2^{\,4-a}}\csc\left(\frac{a\pi}{4}\right)\right]_{a=1}\\&=\color{#3D99F6}{\frac{\pi\ln2}{2\sqrt{2}}}\end{aligned}

Ronak Agarwal
Nov 21, 2014

Put x = 2 t x=2t to get our integral as :

I = 1 2 0 ( t 2 + 1 ) l n ( 2 t ) ( t 4 + 1 ) d t \displaystyle I=\frac { 1 }{ 2 } \int _{ 0 }^{ \infty }{ \frac { { (t }^{ 2 }+1)ln(2t) }{ ({ t }^{ 4 }+1) } dt }

I = 1 2 0 ( t 2 + 1 ) l n ( t ) ( t 4 + 1 ) d t + l n ( 2 ) 2 0 ( t 2 + 1 ) ( t 4 + 1 ) d t \displaystyle I=\frac { 1 }{ 2 } \int _{ 0 }^{ \infty }{ \frac { { (t }^{ 2 }+1)ln(t) }{ ({ t }^{ 4 }+1) } dt } +\frac { ln(2) }{ 2 } \int _{ 0 }^{ \infty }{ \frac { { (t }^{ 2 }+1) }{ ({ t }^{ 4 }+1) } dt }

I = I 1 + I 2 I={I}_{1}+{I}_{2}

I 1 = 0 1 ( t 2 + 1 ) l n ( t ) ( t 4 + 1 ) d t + 1 ( t 2 + 1 ) l n ( t ) ( t 4 + 1 ) d t \displaystyle {I}_{1}=\int _{ 0 }^{ 1 }{ \frac { { (t }^{ 2 }+1)ln(t) }{ ({ t }^{ 4 }+1) } dt } +\int _{ 1 }^{ \infty }{ \frac { { (t }^{ 2 }+1)ln(t) }{ ({ t }^{ 4 }+1) } dt }

In the second integral put z = 1 / t z=1/t to get :

I 1 = 0 1 ( t 2 + 1 ) l n ( t ) ( t 4 + 1 ) d t 0 1 ( z 2 + 1 ) l n ( z ) ( z 4 + 1 ) d z = 0 \displaystyle {I}_{1}=\int _{ 0 }^{ 1 }{ \frac { { (t }^{ 2 }+1)ln(t) }{ ({ t }^{ 4 }+1) } dt } -\int _{ 0 }^{ 1 }{ \frac { { (z }^{ 2 }+1)ln(z) }{ (z^{ 4 }+1) } dz }=0

I 2 = l n ( 2 ) 2 0 ( t 2 + 1 ) ( t 4 + 1 ) d t = l n ( 2 ) 2 0 ( 1 + 1 t 2 ) ( t 2 + 1 t 2 2 ) + 2 d t \displaystyle {I}_{2}=\frac { ln(2) }{ 2 } \int _{ 0 }^{ \infty }{ \frac { { (t }^{ 2 }+1) }{ ({ t }^{ 4 }+1) } dt }=\frac { ln(2) }{ 2 } \int _{ 0 }^{ \infty }{ \frac { (1+\frac { 1 }{ { t }^{ 2 } } ) }{ ({ t }^{ 2 }+\frac { 1 }{ { t }^{ 2 } } -2)+2 } dt }

Put t 1 t = x t-\frac{1}{t}=x to get I 2 {I}_{2} as :

I 2 = l n ( 2 ) 2 0 d x x 2 + 2 \displaystyle {I}_{2}=\frac { ln(2) }{ 2 } \int _{ 0 }^{ \infty }{ \frac { dx }{ { x }^{ 2 }+2 } }

I 2 = π l n ( 2 ) 2 2 \Rightarrow {I}_{2}=\frac { \pi ln(2) }{ 2\sqrt { 2 } }

Hence I = π l n ( 2 ) 2 2 I=\frac { \pi ln(2) }{ 2\sqrt { 2 } }

We can also do it using contour integral.

Kartik Sharma - 5 years, 12 months ago
Aaghaz Mahajan
Nov 9, 2018

Another approach........... Put x^2 = 4tan(theta).............then, differentiate under the integral sign..........!!!!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...