Interesting integral

Calculus Level 3

0 1 x 3 ( x + 1 ) d x = a π b \large \int_0^{\infty} \dfrac{1}{\sqrt[3]{x}(x+1)} \, dx =\dfrac{a\pi}{\sqrt{b}}

If the equation above holds true for positive integers a a and b b such that b b is square-free, find a + b a+b .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 30, 2016

I = 0 x 1 3 x + 1 d x Convert to beta function = B ( 2 3 , 1 3 ) B ( m + 1 , n + 1 ) = 0 u m ( 1 + u ) m + n + 2 d u = Γ ( 2 3 ) Γ ( 1 3 ) Γ ( 1 ) Γ ( ) is gamma function = π sin π 3 0 ! = 2 π 3 \begin{aligned} I & = \int_0^\infty \frac {x^{-\frac 13}}{x+1} dx & \small \color{#3D99F6}{\text{Convert to beta function}} \\ & = B \left(\frac 23, \frac 13 \right) & \small \color{#3D99F6}{B(m+1, n+1) = \int_0^\infty \frac {u^m}{(1+u)^{m+n+2}} du} \\ & = \frac {\Gamma \left(\frac 23\right)\Gamma \left(\frac 13\right)}{\Gamma \left(1\right)} & \small \color{#3D99F6}{\Gamma (\cdot) \text{ is gamma function}} \\ & = \frac {\frac \pi{\sin \frac \pi 3}}{0!} \\ & = \frac {2\pi}{\sqrt 3} \end{aligned}

a + b = 2 + 3 = 5 \implies a+b = 2+3 = \boxed{5}


References

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...