Interesting Integrals 11

Geometry Level 5

What is the area enclosed by the curve 5 x 2 + 2 y 2 + 6 x y + 7 x + 6 y + 6 = 0 5x^2 + 2y^2 + 6xy + 7x + 6y +6 = 0 ?

π 2 \frac{\pi}{2} None of the other choices 3 π 2 \frac{3\pi}{2} π \pi 2 π {2\pi}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 13, 2016

The curve f ( x ) = 5 x 2 + 6 x y + 2 y 2 + 7 x + 6 y + 6 f(x) = 5x^2+6xy+2y^2 + 7x + 6y + 6 is a conic section. Let us check which conic section is it. Its determinant is

Δ = 5 3 7 2 3 2 3 7 2 3 6 = 1 2 0 \Delta = \begin{vmatrix} 5 & 3 & \frac 72 \\ 3 & 2 & 3 \\ \frac 72 & 3 & 6 \end{vmatrix} = - \frac 12 \ne 0 .

And its discriminant B 2 A C = 9 10 = 1 < 0 B^2-AC = 9-10 = -1 < 0 and A C A \ne C , therefore the curve is a ellipse.

For an ellipse of a x 2 + 2 h x y + b y 2 + 2 g x + 2 h f + c = 0 ax^2 + 2hxy + by^2 + 2gx + 2hf + c = 0 , the semi-axis lengths are:

a , b = 2 Δ ( h 2 a b ) ( ± ( a b ) 2 + 4 h 2 ( a + b ) ) = 1 ( 9 10 ) ( ± 9 + 36 7 ) = 1 7 ± 3 5 = 7 3 5 2 \begin{aligned} a', b' & = \sqrt{\frac{-2\Delta}{\left(h^2-ab\right)\left(\pm \sqrt{(a-b)^2+4h^2}-(a+b) \right)}} \\ & = \sqrt{\frac{1}{\left(9-10\right)\left(\pm \sqrt{9+36}-7 \right)}} \\ & = \sqrt{\frac{1}{7 \pm 3\sqrt{5}}} \\ & = \frac{\sqrt{7 \mp 3\sqrt 5}}2 \end{aligned}

Area of ellipse A e l l i p s e = π a b = π 7 + 3 5 2 7 3 5 2 = π 2 A_{ellipse} = \pi a'b' = \pi \cdot \dfrac{\sqrt{7 + 3\sqrt 5}}2 \cdot \dfrac{\sqrt{7 - 3\sqrt 5}}2 = \boxed{\dfrac \pi 2}


Another method to solve for the area of ellipse is to turn f ( x ) f(x) into the form A x 2 + B x y + C y 2 = 1 Ax^2+Bxy+Cy^2 = 1 .

5 x 2 + 6 x y + 2 y 2 + 7 x + 6 y + 6 = 0 5 ( x + h ) 2 + 6 ( x + h ) ( y + k ) + 2 ( y + k ) 2 + c = 0 5 ( x 2 + 2 h x + h 2 ) + 6 ( x y + k x + h y + k h ) + 2 ( y 2 + 2 k y + k 2 ) + c = 0 \begin{aligned} 5x^2+6xy+2y^2 + 7x + 6y + 6 & = 0 \\ 5(x+h)^2 + 6(x+h)(y+k) + 2(y+k)^2 + c & = 0 \\ 5(x^2 + 2hx + h^2) + 6(xy + kx + hy +kh) + 2(y^2+2ky + k^2) + c & = 0 \end{aligned}

Equating coefficients { 10 h + 6 k = 7 6 h + 4 k = 6 { h = 2 k = 9 2 c = 1 2 \begin{cases} 10h + 6k = 7 \\ 6h+4k = 6 \end{cases} \implies \begin{cases} h = -2 \\ k = \frac 92 \\ c = - \frac 12 \end{cases}

5 ( x 2 ) 2 + 6 ( x 2 ) ( y + 9 2 ) + 2 ( y + 9 2 ) 2 = 1 2 Multiply both sides by 2 10 ( x 2 ) 2 + 12 ( x 2 ) ( y + 9 2 ) + 4 ( y + 9 2 ) 2 = 1 \begin{aligned} 5(x-2)^2 + 6(x-2)\left(y+\frac 92\right) + 2\left(y+\frac 92\right)^2 & = \frac 12 & \small \color{#3D99F6}{\text{Multiply both sides by }2} \\ 10(x-2)^2 + 12(x-2)\left(y+\frac 92\right) + 4\left(y+\frac 92\right)^2 & = 1 \end{aligned}

The area of ellipse is given by A e l l i p s e = 2 π 4 A C B 2 = 2 π 160 144 = π 2 A_{ellipse} = \dfrac {2\pi}{\sqrt{4AC-B^2}} = \dfrac {2\pi}{\sqrt{160-144}} = \boxed{\dfrac \pi 2}

@Chew-Seong Cheong -Beautiful solution and a different way of solving.I just loved that sir :))

Krishna Shankar - 4 years, 11 months ago

Log in to reply

Yes, I submit another method too.

Chew-Seong Cheong - 4 years, 11 months ago

I learned the methods of finding area of ellipse as conic section. Thanks. Up Voted.

Niranjan Khanderia - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...