Interesting Integrals 12

Calculus Level 4

0 1 ( x ln x ) 4 d x \large \int_0^1 (x\ln x)^4 \, dx

Find the closed form of the integral to 3 significant figures.


The answer is 0.00768.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 18, 2017

Relevant wiki: Gamma Function

I = 0 1 ( x ln x ) 4 d x Let u = ln x , e u = x , e u d u = d x = 0 u 4 e 5 u d x Let t = 5 u , d t = 5 d u = 1 5 5 0 t 5 1 e t d t = Γ ( 5 ) 5 5 Γ ( ) is the gamma function. = 4 ! 5 5 Note that Γ ( n ) = ( n 1 ) ! 0.00768 \begin{aligned} I & = \int_0^1 (x\ln x)^4 dx & \small \color{#3D99F6} \text{Let }u = \ln x, \ e^u = x, \ e^u \ du = dx \\ & = \int_{-\infty}^0 u^4e^{5u} \ dx & \small \color{#3D99F6} \text{Let }-t = 5u, \ - dt = 5 \ du \\ & = \frac 1{5^5} \int^\infty_0 t^{{\color{#D61F06}5}-1}e^{-t} \ dt \\ & = \frac {\Gamma ({\color{#D61F06}5})}{5^5} & \small \color{#3D99F6} \Gamma(\cdot) \text{ is the gamma function.} \\ & = \frac {4!}{5^5} & \small \color{#3D99F6} \text{Note that } \Gamma(n) = (n-1)! \\ & \approx \boxed{0.00768} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...