Interesting Integrals 5

Calculus Level 3

8 0 1 ln ( 1 + x ) 1 + x 2 d x = π ln A \large8\int_{0}^{1}\dfrac{\ln{(1+x)}}{1+{x^2}}\,dx=\pi \, {\ln A}

Find A 2 A^2 .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Michael Fuller
Jul 12, 2016

Substitute x = tan u d x = sec 2 u d u x= \tan u \Rightarrow dx = \sec^2 u \, du and the integral becomes I = 8 0 π / 4 ln ( 1 + tan u ) 1 + tan 2 u sec 2 u d u = 8 0 π / 4 ln ( 1 + tan u ) d u . I=8 \int _{ 0 }^{ { \pi }/{ 4 } }{ \cfrac { \ln { \left( 1+\tan { u } \right) } }{ 1+\tan ^{ 2 }{ u } } } \cdot \sec ^{ 2 }{ u } \, du = 8 \int _{ 0 }^{ { \pi }/{ 4 } }{ \ln { \left( 1+\tan { u } \right) } } \, du . This is a familiar integral for me as I have posted this problem in the past.

Using a b f ( u ) d u = a b f ( a + b u ) d u \displaystyle \int _{ a }^{ b }{ f(u) } \, du=\int _{ a }^{ b }{ f(a+b-u) } \, du , we can note that 2 I = 8 0 π / 4 ln { ( 1 + tan u ) ( 1 + tan ( π 4 u ) ) } d u = 8 0 π / 4 ln 2 d u = 2 π ln 2. 2I=8 \int _{ 0 }^{ { \pi }/{ 4 } }{ \ln { \left\{ \left( 1+\tan { u } \right) \left( 1+\tan { \left( \cfrac { \pi }{ 4 } -u \right) } \right) \right\} } } \, du = 8 \int _{ 0 }^{ { \pi }/{ 4 } }{ \ln { 2 } } \, du = 2 \pi \ln 2 .

Therefore I = π ln 2 A = 2 A 2 = 4 I= \pi \ln 2 \Rightarrow A=2 \Rightarrow A^2 = \large \color{#20A900}{\boxed{4}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...