Interesting Integrals 7

Calculus Level 5

d x cos 3 x 2 sin ( 2 x ) = ( tan x ) A + C ( tan x ) B + k \large \int\dfrac{dx}{{\cos^3 x}\sqrt{2\sin(2x)}}\,= {(\tan x)^A} + C{(\tan x)^B}+k

The equation above holds true for reals A A , B B and C C such that A + B + C = p q A+B+C = \dfrac pq , where p p and q q are coprime positive integers and k k is the arbitrary constant of integration . Find p + q p+q .


The answer is 21.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rishabh Jain
Jul 10, 2016

Relevant wiki: Integration of Trigonometric Functions - Intermediate

Call the integration I \mathfrak{I} and use sin 2 x = 2 tan x 1 + tan 2 x sec 2 x \small{\color{teal}{\sin 2x=\dfrac{2\tan x }{\underbrace{1+\tan^2 x}_{\color{#D61F06}{\sec^2 x}}}}}

I = 1 2 sec 4 x d x tan x = 1 2 sec 2 x ( 1 + tan 2 x ) d x tan x \mathfrak I=\dfrac{1}{2}\displaystyle\int\dfrac{\sec^4 x~\mathrm{d}x}{\sqrt{\tan x}}=\dfrac{1}{2}\displaystyle\int\dfrac{\sec^2 x(1+\tan^2 x)~\mathrm{d}x}{\sqrt{\tan x}}

Substitute tan x = t 2 \tan x=t^2 such that sec 2 x d x = 2 t d t \sec^2 x~\mathrm{d}x=2t\mathrm{d}t and 1 + tan 2 x = 1 + t 4 1+\tan^2 x=1+t^4 .

I = 1 2 ( 1 + t 4 ) 2 t d t t \implies \mathfrak{I}=\dfrac 12\displaystyle\int\dfrac{(1+t^4)2t~\mathrm{d}t}{t}

= ( 1 + t 4 ) d t =\displaystyle\int (1+t^4)\mathrm{d}t

= t + t 5 5 + k = tan x 1 / 2 + 1 5 tan x 5 / 2 + k =t+\dfrac{t^5}5+k=\tan x^{1/2}+\dfrac 15\cdot\tan x^{5/2}+k

Hence, 1 / 2 + 5 / 2 + 1 / 5 = 16 / 5 1/2+5/2+1/5=16/5

So that 16 + 5 = 21 \Large 16+5=\boxed{21}

Did the same!

Ayush Agarwal - 4 years, 11 months ago

Log in to reply

That's Great... :-)

Rishabh Jain - 4 years, 11 months ago

Typo: 2 tan x 1 + tan 2 x \color{teal}{\dfrac{2 \tan x}{1+\tan^2 x}}

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

Done................

Rishabh Jain - 4 years, 11 months ago
Chew-Seong Cheong
Jul 11, 2016

Relevant wiki: Integration of Trigonometric Functions - Intermediate

I = d x cos 3 x 2 sin 2 x = d x cos 3 x 4 sin x cos x = d x 2 cos 4 x sin x cos x = sec 4 x 2 tan 1 2 x d x Let t = tan x d t = sec 2 d x sec 2 x = 1 + t 2 = 1 + t 2 2 t 1 2 d t = 1 2 t 1 2 d t + 1 2 t 3 2 d t = t 1 2 + 1 5 t 5 2 + k Putting back tan x = t = ( tan x ) 1 2 + 1 5 ( tan x ) 5 2 + k \begin{aligned} I & = \int \frac {dx}{\cos^3 x \sqrt{2\sin2x}} \\ & = \int \frac {dx}{\cos^3 x \sqrt{4\sin x \cos x}} \\ & = \int \frac {dx}{2\cos^4 x \sqrt{\frac {\sin x}{\cos x}}} \\ & = \int \frac {\sec^4 x}{2 \tan^\frac 12 x} dx & \small \color{#3D99F6}{\text{Let }t = \tan x \implies dt = \sec^2 \ dx \implies \sec^2 x = 1+t^2} \\ & = \int \frac {1+t^2}{2t^\frac 12} dt \\ & = \frac 12 \int t^{-\frac 12} \ dt + \frac 12 \int t^\frac 32 \ dt \\ & = t^\frac 12 + \frac 15 t^\frac 52 + k & \small \color{#3D99F6}{\text{Putting back }\tan x = t} \\ & = (\tan x)^\frac 12 + \frac 15 (\tan x)^\frac 52 + k\end{aligned}

A + B + C = 1 2 + 5 2 + 1 5 = 16 5 p + q = 16 + 5 = 21 \implies A + B + C = \frac 12 + \frac 52 + \frac 15 = \frac {16}5 \implies p+q = 16+5 = \boxed{21} .

Same solution

Vignesh S - 4 years, 11 months ago

Typo: Second line denominator cos 3 x 4 sin x cos x \cos^3 \color{#3D99F6}{x}\sqrt{4\sin x\cos x}

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

Thanks. I have done the change.

Chew-Seong Cheong - 4 years, 11 months ago
Hung Woei Neoh
Jul 11, 2016

d x cos 3 x 2 sin 2 x = d x cos 3 x 4 sin x cos x = d x 2 cos 3 x sin x cos 2 x cos x = d x 2 cos 4 x tan x = sec 4 x 2 tan x d x \displaystyle \int \dfrac{dx}{\cos^3 x\sqrt{2\sin2x}}\\ =\displaystyle \int \dfrac{dx}{\cos^3 x\sqrt{\color{#3D99F6}{4\sin x \cos x}}}\\ =\displaystyle \int \dfrac{dx}{2\cos^3 x\sqrt{\frac{\sin x \cos^2 x}{\cos x}}}\\ =\displaystyle \int \dfrac{dx}{2\cos^4 x\sqrt{\color{#D61F06}{\tan x}}}\\ =\displaystyle \int \dfrac{\color{#EC7300}{\sec^4 x}}{2\sqrt{\tan x}} dx

Let u = tan x u 4 = tan 2 x = sec 2 x 1 sec 2 x = u 4 + 1 \color{#69047E}{u=\sqrt{\tan x}} \implies u^4=\color{#20A900}{\tan^2 x = \sec^2 x - 1} \implies \color{magenta}{\sec^2 x = u^4+1}

d u d x = 1 2 tan x sec 2 x d u = sec 2 x 2 tan x d x \dfrac{du}{dx}=\dfrac{1}{2\sqrt{\tan x}}\sec^2 x\\ \implies \color{teal}{du = \dfrac{\sec^2 x}{2\sqrt{\tan x}} dx}

sec 4 x 2 tan x d x = sec 2 x sec 2 x 2 tan x d x = u 4 + 1 d u = u 5 5 + u + k = 1 5 ( tan x ) 5 + tan x + k = ( tan x ) 1 / 2 + 1 5 ( tan x ) 5 / 2 + k \displaystyle \int \dfrac{\sec^4 x}{2\sqrt{\tan x}} dx\\ =\displaystyle \int \color{teal}{\dfrac{\color{magenta}{\sec^2 x}\sec^2 x}{2\sqrt{\tan x}} dx}\\ =\displaystyle \int \color{magenta}{u^4+1}\;\color{teal}{du}\\ =\dfrac{\color{#69047E}{u}^5}{5}+\color{#69047E}{u}+k\\ =\dfrac{1}{5}\left(\color{#69047E}{\sqrt{\tan x}}\right)^5+\color{#69047E}{\sqrt{\tan x}}+k\\ =\left(\tan x\right)^{1/2}+\dfrac{1}{5}\left(\tan x\right)^{5/2}+k

A = 1 2 , B = 5 2 , C = 1 5 , A + B + C = 1 2 + 5 2 + 1 5 = 16 5 p = 16 , q = 5 , p + q = 16 + 5 = 21 A=\dfrac{1}{2},\;B=\dfrac{5}{2},\;C=\dfrac{1}{5},\;A+B+C=\dfrac{1}{2}+\dfrac{5}{2}+\dfrac{1}{5}=\dfrac{16}{5}\\ \implies p=16,\;q=5,\;p+q=16+5=\boxed{21}

Theorems used:

  1. Double angle formula : sin 2 x = 2 sin x cos x \color{#3D99F6}{\sin2x = 2\sin x\cos x}
  2. Definition of tangent : tan x = sin x cos x \color{#D61F06}{\tan x= \dfrac{\sin x}{\cos x}}
  3. Definition of secant : 1 cos x = sec x \color{#EC7300}{\dfrac{1}{\cos x} = \sec x}
  4. Pythagorean trigonometric identity : tan 2 x + 1 = sec 2 x \color{#20A900}{\tan^2 x +1 = \sec^2 x}

BESTEST SOLUTION HERE

Pi Han Goh - 4 years, 11 months ago

Log in to reply

Thanks...is it because of the colors?

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

YESSSSSSSS

Pi Han Goh - 4 years, 11 months ago

@Hung Woei Neoh - ( +1 ) for mentioning the Theorems.

Krishna Shankar - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...