∫ cos 3 x 2 sin ( 2 x ) d x = ( tan x ) A + C ( tan x ) B + k
The equation above holds true for reals A , B and C such that A + B + C = q p , where p and q are coprime positive integers and k is the arbitrary constant of integration . Find p + q .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Did the same!
Typo: 1 + tan 2 x 2 tan x
Relevant wiki: Integration of Trigonometric Functions - Intermediate
I = ∫ cos 3 x 2 sin 2 x d x = ∫ cos 3 x 4 sin x cos x d x = ∫ 2 cos 4 x cos x sin x d x = ∫ 2 tan 2 1 x sec 4 x d x = ∫ 2 t 2 1 1 + t 2 d t = 2 1 ∫ t − 2 1 d t + 2 1 ∫ t 2 3 d t = t 2 1 + 5 1 t 2 5 + k = ( tan x ) 2 1 + 5 1 ( tan x ) 2 5 + k Let t = tan x ⟹ d t = sec 2 d x ⟹ sec 2 x = 1 + t 2 Putting back tan x = t
⟹ A + B + C = 2 1 + 2 5 + 5 1 = 5 1 6 ⟹ p + q = 1 6 + 5 = 2 1 .
Same solution
Typo: Second line denominator cos 3 x 4 sin x cos x
∫ cos 3 x 2 sin 2 x d x = ∫ cos 3 x 4 sin x cos x d x = ∫ 2 cos 3 x cos x sin x cos 2 x d x = ∫ 2 cos 4 x tan x d x = ∫ 2 tan x sec 4 x d x
Let u = tan x ⟹ u 4 = tan 2 x = sec 2 x − 1 ⟹ sec 2 x = u 4 + 1
d x d u = 2 tan x 1 sec 2 x ⟹ d u = 2 tan x sec 2 x d x
∫ 2 tan x sec 4 x d x = ∫ 2 tan x sec 2 x sec 2 x d x = ∫ u 4 + 1 d u = 5 u 5 + u + k = 5 1 ( tan x ) 5 + tan x + k = ( tan x ) 1 / 2 + 5 1 ( tan x ) 5 / 2 + k
A = 2 1 , B = 2 5 , C = 5 1 , A + B + C = 2 1 + 2 5 + 5 1 = 5 1 6 ⟹ p = 1 6 , q = 5 , p + q = 1 6 + 5 = 2 1
Theorems used:
BESTEST SOLUTION HERE
Log in to reply
Thanks...is it because of the colors?
@Hung Woei Neoh - ( +1 ) for mentioning the Theorems.
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Integration of Trigonometric Functions - Intermediate
Call the integration I and use sin 2 x = sec 2 x 1 + tan 2 x 2 tan x
I = 2 1 ∫ tan x sec 4 x d x = 2 1 ∫ tan x sec 2 x ( 1 + tan 2 x ) d x
Substitute tan x = t 2 such that sec 2 x d x = 2 t d t and 1 + tan 2 x = 1 + t 4 .
⟹ I = 2 1 ∫ t ( 1 + t 4 ) 2 t d t
= ∫ ( 1 + t 4 ) d t
= t + 5 t 5 + k = tan x 1 / 2 + 5 1 ⋅ tan x 5 / 2 + k
Hence, 1 / 2 + 5 / 2 + 1 / 5 = 1 6 / 5
So that 1 6 + 5 = 2 1