Interesting Integrals 9

Calculus Level 3

1 3 d x ( 1 + x 2 ) 3 = a b b \large \int_{1}^{\sqrt 3}\dfrac{dx}{\sqrt {(1+x^2)^{3}}}\ = \dfrac{\sqrt a - \sqrt b}{b}

If the equation above holds true, find a + b a+b .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Jul 10, 2016

Relevant wiki: Trigonometric Substitution in Integration

Substitute x = tan y x=\tan y so that d x = sec 2 y d y = ( 1 + tan 2 y ) d y \mathrm{d}x=\sec^2y ~\mathrm{d}y=(1+\tan^2 y)~\mathrm{d}y and integration is:

G = π / 4 π / 3 ( 1 + tan 2 y ) d y ( 1 + tan 2 y ) 3 \large \mathfrak G=\displaystyle\int_{\pi/4}^{\pi/3}\dfrac{ (1+\tan^2 y)~\mathrm{d}y}{ \sqrt{(1+\tan^2 y)^3}}

= π / 4 π / 3 d y 1 + tan 2 y sec 2 y = sec y \large = \displaystyle\int_{\pi/4}^{\pi/3}\dfrac{ ~\mathrm{d}y}{\underbrace{ \sqrt{1+\tan^2 y}}_{\color{#D61F06}{\sqrt{\sec^2 y}=\sec y}}}

= π / 4 π / 3 cos y d y \large = \displaystyle\int_{\pi/4}^{\pi/3} \cos y~\mathrm{d}y

= [ sin y ] π / 4 π / 3 = 3 2 2 \large =\left[\sin y\right]_{\pi/4}^{\pi/3}=\dfrac{\sqrt 3-\sqrt 2}2

Hence, 2 + 3 = 5 \Large 2+3=\boxed{\color{#0C6AC7}{5}}

@Rishabh Cool - Thanks :)

Krishna Shankar - 4 years, 11 months ago

Log in to reply

No problem.. :-)

Rishabh Jain - 4 years, 11 months ago

The set interesting integrals you posted is indeed interesting! I am enjoying your problems! :)

Noel Lo - 4 years, 11 months ago

Log in to reply

Thank you :))

Krishna Shankar - 4 years, 11 months ago

Coincidently,again the same solution!

Ayush Agarwal - 4 years, 11 months ago

Log in to reply

Great again.. :-)

Rishabh Jain - 4 years, 11 months ago
Chew-Seong Cheong
Jul 11, 2016

\begin{aligned} I & = \int_1^\sqrt 3 \frac {dx}{\sqrt{(1+x^2)^3}} & \small \color{#3D99F6}{\text{Let } x = \tan \theta \implies dx = \sec^2 \theta \ d \theta} \\ & = \int_\frac \pi 4 ^\frac \pi 3 \frac {\sec^2 \theta}{\sqrt{(\sec^2 \theta)^3}} d \theta \\ & = \int_\frac \pi 4 ^\frac \pi 3 \frac {\sec^2 \theta}{\sec^3 \theta} d \theta \\ & = \int_\frac \pi 4 ^\frac \pi 3 \frac 1{\sec \theta} d \theta \\ & = \int_\frac \pi 4 ^\frac \pi 3 \cos \theta \ d \theta \\ & = \sin \theta \ \bigg|_\frac \pi 4 ^\frac \pi 3 \\ & = \frac {\sqrt 3}2 - \frac {\sqrt 2}2 \\ & = \frac {\sqrt 3 - \sqrt 2}2 \end{aligned}

a + b = 3 + 2 = 5 \implies a+b = 3+2 = \boxed{5}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...