∫ 1 3 ( 1 + x 2 ) 3 d x = b a − b
If the equation above holds true, find a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
@Rishabh Cool - Thanks :)
Log in to reply
No problem.. :-)
The set interesting integrals you posted is indeed interesting! I am enjoying your problems! :)
Coincidently,again the same solution!
\begin{aligned} I & = \int_1^\sqrt 3 \frac {dx}{\sqrt{(1+x^2)^3}} & \small \color{#3D99F6}{\text{Let } x = \tan \theta \implies dx = \sec^2 \theta \ d \theta} \\ & = \int_\frac \pi 4 ^\frac \pi 3 \frac {\sec^2 \theta}{\sqrt{(\sec^2 \theta)^3}} d \theta \\ & = \int_\frac \pi 4 ^\frac \pi 3 \frac {\sec^2 \theta}{\sec^3 \theta} d \theta \\ & = \int_\frac \pi 4 ^\frac \pi 3 \frac 1{\sec \theta} d \theta \\ & = \int_\frac \pi 4 ^\frac \pi 3 \cos \theta \ d \theta \\ & = \sin \theta \ \bigg|_\frac \pi 4 ^\frac \pi 3 \\ & = \frac {\sqrt 3}2 - \frac {\sqrt 2}2 \\ & = \frac {\sqrt 3 - \sqrt 2}2 \end{aligned}
⟹ a + b = 3 + 2 = 5
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Trigonometric Substitution in Integration
Substitute x = tan y so that d x = sec 2 y d y = ( 1 + tan 2 y ) d y and integration is:
G = ∫ π / 4 π / 3 ( 1 + tan 2 y ) 3 ( 1 + tan 2 y ) d y
= ∫ π / 4 π / 3 sec 2 y = sec y 1 + tan 2 y d y
= ∫ π / 4 π / 3 cos y d y
= [ sin y ] π / 4 π / 3 = 2 3 − 2
Hence, 2 + 3 = 5