Interesting Limit (10)

Calculus Level 4

A = lim n n 2 ( B ( 2 2 n + 1 + 2 2 n + 3 + + 2 4 n 1 ) ) A=\lim_{n\to\infty}n^2\left(B-\left(\frac 2{2n+1}+\frac 2{2n+3}+\cdots+\frac 2{4n-1}\right)\right)

The limit A A above exists. Find e B A 8 \sqrt[8]{{\large e}^{\frac BA}} .


You may want to try this easier problem first.


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mark Hennings
May 2, 2018

Note that T n = j = n 2 n 1 2 2 j + 1 = 2 ( j = 0 2 n 1 1 2 j + 1 j = 0 n 1 1 2 j + 1 ) = 2 ( j = 1 4 n 1 j j = 1 2 n 1 2 j j = 1 2 n 1 j + j = 1 n 1 2 j ) = 2 H 2 n 3 H 2 n + H n T_n \; = \; \sum_{j=n}^{2n-1} \frac{2}{2j+1} \; = \; 2\left(\sum_{j=0}^{2n-1}\frac{1}{2j+1} - \sum_{j=0}^{n-1}\frac{1}{2j+1}\right) \; = \; 2\left(\sum_{j=1}^{4n}\frac{1}{j} - \sum_{j=1}^{2n}\frac{1}{2j} - \sum_{j=1}^{2n}\frac{1}{j} + \sum_{j=1}^n \frac{1}{2j}\right) \; = \; 2H_{2n} - 3H_{2n} + H_n and so T n = ln 2 + 2 S 4 n 3 S 2 n + S n T_n = \ln2 + 2S_{4n} - 3S_{2n} + S_n , where S n = H n ln n S_n = H_n - \ln n . Since S n = γ + 1 2 n 1 12 n 2 + o ( n 2 ) n S_n \; = \; \gamma + \frac{1}{2n} - \frac{1}{12n^2} + o\big(n^{-2}\big) \hspace{2cm} n \to \infty we deduce that 2 S 4 n 3 S 2 n + S n = 1 32 n 2 + o ( n 2 ) n 2S_{4n} - 3S_{2n} + S_n \; = \; -\tfrac{1}{32}n^{-2} + o\big(n^{-2}\big) \hspace{2cm} n \to \infty and hence lim n n 2 [ ln 2 T n ] = 1 32 \lim_{n \to \infty} n^2\big[\ln2 - T_n\big] \; = \; \tfrac{1}{32} so that A = 1 32 A = \tfrac{1}{32} and B = ln 2 B = \ln2 . Thus e B A = 2 32 e^{\frac{B}{A}} = 2^{32} , making the answer 2 32 8 = 2 4 = 16 \sqrt[8]{2^{32}} = 2^4 = \boxed{16} .

Let us first see that lim n r = 1 n 2 2 n + 2 r 1 = lim n 1 n r = 1 n 1 1 + r n 1 2 n = 0 1 1 1 + x d x = ln ( 2 ) \displaystyle \lim_{n\to\infty}\sum_{r=1}^{n}\frac{2}{2n+2r-1} = \lim_{n\to\infty}\frac{1}{n}\sum_{r=1}^{n}\frac{1}{1+\frac{r}{n}-\frac{1}{2n}}=\int_{0}^{1}\frac{1}{1+x}dx = \ln(2)

Hence B = ln ( 2 ) B=\ln(2) otherwise the limit would tend to infinity . But B = ln ( 2 ) B=\ln(2) ensures that we have a 0 0 \frac{0}{0} form.

Now we have:-

lim n ( ln ( 2 ) r = 1 n 2 2 n + 2 r 1 ) 1 n 2 \displaystyle \lim_{n\to\infty}\frac{\left(\ln(2) -\sum_{r=1}^{n}\frac{2}{2n+2r-1}\right)}{\frac{1}{n^{2}}}

As 1 n 2 \frac{1}{n^{2}} is monotone and tends to 0 we can apply Stolz-Cesaro Theorem

Hence we have lim n ( ln ( 2 ) r = 1 n 2 2 n + 2 r 1 ) 1 n 2 = lim n 2 ( r = 1 n + 1 1 2 ( n + 1 ) + 2 r 1 r = 1 n 1 2 n + 2 r 1 ) 1 n 2 1 ( n + 1 ) 2 \displaystyle \lim_{n\to\infty}\frac{\left(\ln(2) -\sum_{r=1}^{n}\frac{2}{2n+2r-1}\right)}{\frac{1}{n^{2}}} = \lim_{n\to\infty} \frac{2\left(\sum_{r=1}^{n+1}\frac{1}{2(n+1)+2r-1} - \sum_{r=1}^{n}\frac{1}{2n+2r-1}\right)}{\frac{1}{n^{2}}-\frac{1}{(n+1)^{2}}}

Simplifying the above we have:-

lim n 2 ( 1 4 n + 3 + r = 1 n ( 1 2 n + ( 2 r + 1 ) 1 2 n + ( 2 r 1 ) ) ) 2 n + 1 n 2 ( n + 1 ) 2 \displaystyle \lim_{n\to\infty}\frac{2\left(\frac{1}{4n+3}+\sum_{r=1}^{n}\left(\frac{1}{2n+(2r+1)}-\frac{1}{2n+(2r-1)}\right)\right)}{\frac{2n+1}{n^{2}(n+1)^{2}}}

Simplifying further we have:-

lim n 2 ( 1 4 n + 1 + 1 4 n + 3 1 2 n + 1 ) 2 n + 1 n 2 ( n + 1 ) 2 \displaystyle \lim_{n\to\infty}\frac{2\left(\frac{1}{4n+1}+\frac{1}{4n+3}-\frac{1}{2n+1}\right)}{\frac{2n+1}{n^{2}(n+1)^{2}}}

Simplifying further we have:-

lim n 2 ( ( 8 n + 4 ) ( 2 n + 1 ) ( 4 n + 1 ) ( 4 n + 3 ) ) ( 4 n + 1 ) ( 4 n + 3 ) ( 2 n + 1 ) 2 ( n 2 ( n + 1 ) 2 ) = lim n 2 16 n 2 + 16 n + 4 16 n 2 16 n 3 ( 4 n + 3 ) ( 4 n + 3 ) ( 2 n + 1 ) 2 n 2 ( n + 1 ) 2 = lim n 2 n 2 ( n + 1 ) 2 ( 4 n + 1 ) ( 4 n + 3 ) ( 2 n + 1 ) ( 2 n + 1 ) = 2 4 3 = 1 32 \displaystyle \lim_{n\to\infty}\frac{2\left((8n+4)(2n+1)-(4n+1)(4n+3)\right)}{(4n+1)(4n+3)(2n+1)^{2}}\cdot (n^{2}(n+1)^{2})=\lim_{n\to\infty}2\cdot\frac{16n^{2}+16n+4-16n^{2}-16n-3}{(4n+3)(4n+3)(2n+1)^{2}}\cdot n^{2}\cdot (n+1)^{2}= \lim_{n\to\infty}\frac{2n^{2}\cdot (n+1)^{2}}{(4n+1)(4n+3)(2n+1)(2n+1)} =\frac{2}{4^{3}}= \frac{1}{32}

Hence ( exp ( B A ) ) 1 8 = exp ( ln ( 16 ) ) = 16 \large (\text{exp}(\frac{B}{A}))^{\frac{1}{8}}=\text{exp}(\ln(16)) =16

Brian Moehring
Jul 18, 2018

Relevant wiki: Taylor's Theorem (with Lagrange Remainder)

First note that 2 2 n + 1 + 2 2 n + 3 + + 2 4 n 1 = k = 1 n 2 2 n + 2 k 1 = 1 n k = 1 n 1 1 + k 1 / 2 n n 0 1 1 1 + x d x = ln 2 , \frac{2}{2n+1} + \frac{2}{2n+3} + \cdots + \frac{2}{4n-1} = \sum_{k=1}^n \frac{2}{2n+2k-1} = \frac{1}{n} \sum_{k=1}^n \frac{1}{1+\frac{k-1/2}{n}} \xrightarrow{n\to\infty} \int_0^1 \frac{1}{1+x}\,dx = \ln 2, so that we must have B = ln 2 B = \ln 2 . Also, using the integral form for B B and setting f ( x ) = 1 1 + x f(x) = \frac{1}{1+x} , we have B 1 n k = 1 n f ( k 1 / 2 n ) = k = 1 n ( k 1 ) / n k / n ( f ( x ) f ( k 1 / 2 n ) ) d x B - \frac{1}{n} \sum_{k=1}^n f\left(\frac{k-1/2}{n}\right) = \sum_{k=1}^n \int_{(k-1)/n}^{k/n} \left(f(x) - f\left(\frac{k-1/2}{n}\right)\right)\,dx

To evaluate this, we temporarily fix k , n k,n and use Taylor's theorem twice to write ( k 1 ) / n ( k 1 / 2 ) / n ( f ( x ) f ( k 1 / 2 n ) ) d x = 1 2 f ( k 1 / 2 n ) ( 1 2 n ) 2 + 1 6 f ( η 1 ) ( 1 2 n ) 3 ( k 1 / 2 ) / n k / n ( f ( x ) f ( k 1 / 2 n ) ) d x = + 1 2 f ( k 1 / 2 n ) ( 1 2 n ) 2 + 1 6 f ( η 2 ) ( 1 2 n ) 3 \begin{aligned} \int_{(k-1)/n}^{(k-1/2)/n} \left(f(x) - f\left(\frac{k-1/2}{n}\right)\right)\,dx &= -\frac{1}{2}f'\left(\frac{k-1/2}{n}\right)\cdot \left(\frac{1}{2n}\right)^2 + \frac{1}{6} f''(\eta_1)\left(\frac{1}{2n}\right)^3 \\[1ex] \int_{(k-1/2)/n}^{k/n} \left(f(x) - f\left(\frac{k-1/2}{n}\right)\right)\,dx &= +\frac{1}{2}f'\left(\frac{k-1/2}{n}\right)\cdot \left(\frac{1}{2n}\right)^2 + \frac{1}{6} f''(\eta_2)\left(\frac{1}{2n}\right)^3 \end{aligned} for some k 1 n < η 1 < k 1 / 2 n < η 2 < k n \frac{k-1}{n} < \eta_1 < \frac{k-1/2}{n} < \eta_2 < \frac{k}{n} . Then adding these two gives ( k 1 ) / n k / n ( f ( x ) f ( k 1 / 2 n ) ) d x = 1 24 n 3 f ( η 1 ) + f ( η 2 ) 2 = 1 24 n 3 f ( x k , n ) \int_{(k-1)/n}^{k/n} \left(f(x) - f\left(\frac{k-1/2}{n}\right)\right)\,dx = \frac{1}{24n^3} \frac{f''(\eta_1) + f''(\eta_2)}{2} = \frac{1}{24n^3}f''(x_{k,n}) for some x k , n ( η 1 , η 2 ) ( k 1 n , k n ) x_{k,n} \in (\eta_1, \eta_2) \subset \left(\frac{k-1}{n},\frac{k}{n}\right) .

Going back to the main problem, we have A = lim n n 2 ( B ( 2 2 n + 1 + 2 2 n + 3 + + 2 4 n 1 ) ) = lim n n 2 k = 1 n 1 24 n 3 f ( x k , n ) = 1 24 lim n 1 n k = 1 n f ( x k , n ) = 1 24 0 1 f ( x ) d x = 1 24 ( f ( 1 ) f ( 0 ) ) = 1 24 ( 1 ( 1 + 1 ) 2 + 1 ( 1 + 0 ) 2 ) = 1 32 \begin{aligned} A &= \lim_{n\to\infty} n^2\left(B - \left(\frac{2}{2n+1} + \frac{2}{2n+3} + \cdots + \frac{2}{4n-1}\right)\right) \\ &= \lim_{n\to\infty} n^2 \sum_{k=1}^n \frac{1}{24n^3}f''(x_{k,n}) \\ &= \frac{1}{24} \lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^n f''(x_{k,n}) \\ &= \frac{1}{24} \int_0^1 f''(x)\,dx \\ &= \frac{1}{24} \left(f'(1) - f'(0)\right) \\ &= \frac{1}{24} \left(-\frac{1}{(1+1)^2} + \frac{1}{(1+0)^2}\right) \\ &= \frac{1}{32} \end{aligned}

Therefore e B A 8 = e 32 ln 2 8 = 2 4 = 16 \large \sqrt[8]{e^{\frac{B}{A}}} = e^{\frac{32\ln 2}{8}} = 2^4 = \boxed{16}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...