A = n → ∞ lim n 2 ( B − ( 2 n + 1 2 + 2 n + 3 2 + ⋯ + 4 n − 1 2 ) )
The limit A above exists. Find 8 e A B .
You may want to try this easier problem first.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let us first see that n → ∞ lim r = 1 ∑ n 2 n + 2 r − 1 2 = n → ∞ lim n 1 r = 1 ∑ n 1 + n r − 2 n 1 1 = ∫ 0 1 1 + x 1 d x = ln ( 2 )
Hence B = ln ( 2 ) otherwise the limit would tend to infinity . But B = ln ( 2 ) ensures that we have a 0 0 form.
Now we have:-
n → ∞ lim n 2 1 ( ln ( 2 ) − ∑ r = 1 n 2 n + 2 r − 1 2 )
As n 2 1 is monotone and tends to 0 we can apply Stolz-Cesaro Theorem
Hence we have n → ∞ lim n 2 1 ( ln ( 2 ) − ∑ r = 1 n 2 n + 2 r − 1 2 ) = n → ∞ lim n 2 1 − ( n + 1 ) 2 1 2 ( ∑ r = 1 n + 1 2 ( n + 1 ) + 2 r − 1 1 − ∑ r = 1 n 2 n + 2 r − 1 1 )
Simplifying the above we have:-
n → ∞ lim n 2 ( n + 1 ) 2 2 n + 1 2 ( 4 n + 3 1 + ∑ r = 1 n ( 2 n + ( 2 r + 1 ) 1 − 2 n + ( 2 r − 1 ) 1 ) )
Simplifying further we have:-
n → ∞ lim n 2 ( n + 1 ) 2 2 n + 1 2 ( 4 n + 1 1 + 4 n + 3 1 − 2 n + 1 1 )
Simplifying further we have:-
n → ∞ lim ( 4 n + 1 ) ( 4 n + 3 ) ( 2 n + 1 ) 2 2 ( ( 8 n + 4 ) ( 2 n + 1 ) − ( 4 n + 1 ) ( 4 n + 3 ) ) ⋅ ( n 2 ( n + 1 ) 2 ) = n → ∞ lim 2 ⋅ ( 4 n + 3 ) ( 4 n + 3 ) ( 2 n + 1 ) 2 1 6 n 2 + 1 6 n + 4 − 1 6 n 2 − 1 6 n − 3 ⋅ n 2 ⋅ ( n + 1 ) 2 = n → ∞ lim ( 4 n + 1 ) ( 4 n + 3 ) ( 2 n + 1 ) ( 2 n + 1 ) 2 n 2 ⋅ ( n + 1 ) 2 = 4 3 2 = 3 2 1
Hence ( exp ( A B ) ) 8 1 = exp ( ln ( 1 6 ) ) = 1 6
Relevant wiki: Taylor's Theorem (with Lagrange Remainder)
First note that 2 n + 1 2 + 2 n + 3 2 + ⋯ + 4 n − 1 2 = k = 1 ∑ n 2 n + 2 k − 1 2 = n 1 k = 1 ∑ n 1 + n k − 1 / 2 1 n → ∞ ∫ 0 1 1 + x 1 d x = ln 2 , so that we must have B = ln 2 . Also, using the integral form for B and setting f ( x ) = 1 + x 1 , we have B − n 1 k = 1 ∑ n f ( n k − 1 / 2 ) = k = 1 ∑ n ∫ ( k − 1 ) / n k / n ( f ( x ) − f ( n k − 1 / 2 ) ) d x
To evaluate this, we temporarily fix k , n and use Taylor's theorem twice to write ∫ ( k − 1 ) / n ( k − 1 / 2 ) / n ( f ( x ) − f ( n k − 1 / 2 ) ) d x ∫ ( k − 1 / 2 ) / n k / n ( f ( x ) − f ( n k − 1 / 2 ) ) d x = − 2 1 f ′ ( n k − 1 / 2 ) ⋅ ( 2 n 1 ) 2 + 6 1 f ′ ′ ( η 1 ) ( 2 n 1 ) 3 = + 2 1 f ′ ( n k − 1 / 2 ) ⋅ ( 2 n 1 ) 2 + 6 1 f ′ ′ ( η 2 ) ( 2 n 1 ) 3 for some n k − 1 < η 1 < n k − 1 / 2 < η 2 < n k . Then adding these two gives ∫ ( k − 1 ) / n k / n ( f ( x ) − f ( n k − 1 / 2 ) ) d x = 2 4 n 3 1 2 f ′ ′ ( η 1 ) + f ′ ′ ( η 2 ) = 2 4 n 3 1 f ′ ′ ( x k , n ) for some x k , n ∈ ( η 1 , η 2 ) ⊂ ( n k − 1 , n k ) .
Going back to the main problem, we have A = n → ∞ lim n 2 ( B − ( 2 n + 1 2 + 2 n + 3 2 + ⋯ + 4 n − 1 2 ) ) = n → ∞ lim n 2 k = 1 ∑ n 2 4 n 3 1 f ′ ′ ( x k , n ) = 2 4 1 n → ∞ lim n 1 k = 1 ∑ n f ′ ′ ( x k , n ) = 2 4 1 ∫ 0 1 f ′ ′ ( x ) d x = 2 4 1 ( f ′ ( 1 ) − f ′ ( 0 ) ) = 2 4 1 ( − ( 1 + 1 ) 2 1 + ( 1 + 0 ) 2 1 ) = 3 2 1
Therefore 8 e A B = e 8 3 2 ln 2 = 2 4 = 1 6
Problem Loading...
Note Loading...
Set Loading...
Note that T n = j = n ∑ 2 n − 1 2 j + 1 2 = 2 ( j = 0 ∑ 2 n − 1 2 j + 1 1 − j = 0 ∑ n − 1 2 j + 1 1 ) = 2 ( j = 1 ∑ 4 n j 1 − j = 1 ∑ 2 n 2 j 1 − j = 1 ∑ 2 n j 1 + j = 1 ∑ n 2 j 1 ) = 2 H 2 n − 3 H 2 n + H n and so T n = ln 2 + 2 S 4 n − 3 S 2 n + S n , where S n = H n − ln n . Since S n = γ + 2 n 1 − 1 2 n 2 1 + o ( n − 2 ) n → ∞ we deduce that 2 S 4 n − 3 S 2 n + S n = − 3 2 1 n − 2 + o ( n − 2 ) n → ∞ and hence n → ∞ lim n 2 [ ln 2 − T n ] = 3 2 1 so that A = 3 2 1 and B = ln 2 . Thus e A B = 2 3 2 , making the answer 8 2 3 2 = 2 4 = 1 6 .