Interesting Limit (11)

Calculus Level 5

lim n n 2 ( ( 1 + 1 n + 1 ) n + 1 ( 1 + 1 n ) n ) = ? \large\lim_{n\to\infty}n^2\left(\left(1+\frac 1{n+1}\right)^{n+1}-\left(1+\frac 1n\right)^n\right)=\, ?


The answer is 1.35914.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Jun 7, 2018

Note that n 2 [ ( 1 + 1 n + 1 ) n + 1 ( 1 + 1 n ) n ] = n 2 ( 1 + 1 n ) n [ ( n + 2 ) n + 1 n n ( n + 1 ) 2 n + 1 1 ] = n 2 ( 1 + 1 n ) n [ n + 1 n ( 1 1 ( n + 1 ) 2 ) n + 1 1 ] n^2\left[\left(1 + \tfrac{1}{n+1}\right)^{n+1} - \left(1 + \tfrac{1}{n}\right)^n\right] \; = \; n^2\left(1 + \tfrac{1}{n}\right)^n\left[\frac{(n+2)^{n+1}n^n}{(n+1)^{2n+1}} - 1 \right] \; = \; n^2\left(1 + \tfrac{1}{n}\right)^n\left[\frac{n+1}{n}\left(1 - \frac{1}{(n+1)^2}\right)^{n+1} - 1\right] Now ln ( 1 1 ( n + 1 ) 2 ) = 1 ( n + 1 ) 2 + o ( n 3 ) ( n + 1 ) ln ( 1 1 ( n + 1 ) 2 ) = 1 n + 1 + o ( n 2 ) ( 1 1 ( n + 1 ) 2 ) n + 1 = e 1 n + 1 + o ( n 2 ) = 1 1 n + 1 + 1 2 ( n + 1 ) 2 + o ( n 2 ) n + 1 n ( 1 1 ( n + 1 ) 2 ) n + 1 = 1 + 1 2 n ( n + 1 ) + o ( n 2 ) n 2 [ n + 1 n ( 1 1 ( n + 1 ) 2 ) n + 1 1 ] = n 2 ( n + 1 ) + o ( 1 ) \begin{aligned} \ln\left(1 - \tfrac{1}{(n+1)^2}\right) & = \; -\tfrac{1}{(n+1)^2} + o\big(n^{-3}\big) \\ (n+1)\ln\left(1 - \tfrac{1}{(n+1)^2}\right) & = \; -\tfrac{1}{n+1} + o\big(n^{-2}\big) \\ \left(1 - \tfrac{1}{(n+1)^2}\right)^{n+1} & = \; e^{-\frac{1}{n+1} + o(n^{-2})} \; = \; 1 - \tfrac{1}{n+1} + \tfrac{1}{2(n+1)^2} + o\big(n^{-2}\big) \\ \tfrac{n+1}{n}\left(1 - \tfrac{1}{(n+1)^2}\right)^{n+1} &= \; 1 + \tfrac{1}{2n(n+1)} + o\big(n^{-2}\big) \\ n^2\left[\tfrac{n+1}{n}\left(1 - \tfrac{1}{(n+1)^2}\right)^{n+1} - 1\right] & = \; \tfrac{n}{2(n+1)} + o(1) \end{aligned} as n n \to \infty . Thus we deduce that lim n n 2 [ ( 1 + 1 n + 1 ) n + 1 ( 1 + 1 n ) n ] = 1 2 e \lim_{n \to \infty} n^2\left[\left(1 + \tfrac{1}{n+1}\right)^{n+1} - \left(1 + \tfrac{1}{n}\right)^n\right] \; =\; \boxed{\tfrac12e}

Clever use of taylor series

D S - 3 years ago

its all about approximations and understanding the growth of functions. this is very useful in complexity theory. they study the time taken by the algorithm. they express this growth using the o notation. polynomial time algorithms means time taken is o(n^k), where k is a natural number.

Srikanth Tupurani - 2 years, 11 months ago
Brian Moehring
Jul 15, 2018

We apply the mean value theorem to f ( x ) = ( 1 + 1 x ) x f(x) = \left(1+\frac{1}{x}\right)^x on [ n , n + 1 ] [n,n+1] to give a function ε : ( 0 , ) ( 0 , 1 ) \varepsilon : (0,\infty)\to(0,1) such that f ( n + 1 ) f ( n ) = f ( n + ε ( n ) ) ( ( n + 1 ) n ) = ( 1 + 1 n + ε ( n ) ) n + ε ( n ) ( ln ( 1 + 1 n + ε ( n ) ) 1 n + ε ( n ) + 1 ) f(n+1)-f(n) = f'(n+\varepsilon(n))((n+1)-n) = \left(1+\frac{1}{n+\varepsilon(n)}\right)^{n+\varepsilon(n)}\left(\ln\left(1+\frac{1}{n+\varepsilon(n)}\right) - \frac{1}{n+\varepsilon(n)+1}\right)

Now, since 0 < ε ( n ) < 1 0 < \varepsilon(n) < 1 implies lim n n 2 ( n + ε ( n ) ) 2 = 1 \lim_{n\to\infty} \frac{n^2}{(n+\varepsilon(n))^2} = 1 , it follows that lim n n 2 ( ( 1 + 1 n + 1 ) n + 1 ( 1 + 1 n ) n ) = lim n ( n + ε ( n ) ) 2 ( 1 + 1 n + ε ( n ) ) n + ε ( n ) ( ln ( 1 + 1 n + ε ( n ) ) 1 n + ε ( n ) + 1 ) = lim x x 2 ( 1 + 1 x ) x ( ln ( 1 + 1 x ) 1 x + 1 ) \begin{aligned} \lim_{n\to\infty} n^2\left(\left(1+\frac{1}{n+1}\right)^{n+1} - \left(1+\frac{1}{n}\right)^n\right) &= \lim_{n\to\infty} (n+\varepsilon(n))^2\left(1+\frac{1}{n+\varepsilon(n)}\right)^{n+\varepsilon(n)}\left(\ln\left(1+\frac{1}{n+\varepsilon(n)}\right) - \frac{1}{n+\varepsilon(n)+1}\right) \\ &= \lim_{x\to\infty} x^2\left(1+\frac{1}{x}\right)^x \left(\ln\left(1+\frac{1}{x}\right) - \frac{1}{x+1}\right) \end{aligned} where this last equality is true as long as the last limit exists. To evaluate it, we can use the fact ( 1 + 1 x ) x e \left(1+\frac{1}{x}\right)^x\to e along with one application of L'Hopital's rule: lim x x 2 ( 1 + 1 x ) x ( ln ( 1 + 1 x ) 1 x + 1 ) = e lim x ln ( 1 + 1 x ) 1 x + 1 1 x 2 = e lim x 1 x + 1 1 x + 1 ( x + 1 ) 2 2 x 3 = e lim x x 2 2 ( x + 1 ) 2 = e 1 2 = e 2 1.35914091 \begin{aligned} \lim_{x\to\infty} x^2\left(1+\frac{1}{x}\right)^x \left(\ln\left(1+\frac{1}{x}\right) - \frac{1}{x+1}\right) &= e \cdot \lim_{x\to\infty} \frac{\ln\left(1+\frac{1}{x}\right) - \frac{1}{x+1}}{\frac{1}{x^2}} \\ &= e \cdot \lim_{x\to\infty} \frac{\frac{1}{x+1}-\frac{1}{x} + \frac{1}{(x+1)^2}}{-\frac{2}{x^3}} \\ &= e \cdot \lim_{x\to\infty} \frac{x^2}{2(x+1)^2} \\ &= e \cdot \frac{1}{2} = \boxed{\frac{e}{2} \approx 1.35914091} \end{aligned}


Note: In this case, f ( x ) < 0 f''(x) < 0 for all x > 0 x>0 , so ε \varepsilon is uniquely defined. Even for general functions f f satisfying the assumptions of the mean value theorem, we can always choose such a function ε \varepsilon by the axiom of choice.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...