Interesting Limit (12)

Calculus Level 3

lim n n 3 2 ( n + 2 2 n + 1 + n ) = ? \large\lim_{n\to\infty}n^{\frac 32}\left(\sqrt{n+2}-2\sqrt{n+1}+\sqrt n\right)=\, ?


The answer is -0.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Brian Moehring
Jul 17, 2018

Here's a proof from first principles. First we apply the algebraic identity x + a x + b = ( x + a x + b ) ( x + a + x + b ) x + a + x + b = a b x + a + x + b \sqrt{x+a} - \sqrt{x+b} = \frac{(\sqrt{x+a} - \sqrt{x+b})(\sqrt{x+a} + \sqrt{x+b})}{\sqrt{x+a} + \sqrt{x+b}} = \frac{a-b}{\sqrt{x+a}+\sqrt{x+b}} several times to write n + 2 2 n + 1 + n = ( n + 2 n + 1 ) ( n + 1 n ) = 1 n + 2 + n + 1 1 n + 1 + n = n n + 2 ( n + 2 + n + 1 ) ( n + 1 + n ) = 2 ( n + 2 + n + 1 ) ( n + 2 + n ) ( n + 1 + n ) \begin{aligned} \sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n} &= \left(\sqrt{n+2} - \sqrt{n+1}\right) - \left(\sqrt{n+1} - \sqrt{n}\right) \\ &= \frac{1}{\sqrt{n+2}+\sqrt{n+1}} - \frac{1}{\sqrt{n+1}+\sqrt{n}} \\ &= \frac{\sqrt{n} - \sqrt{n+2}}{(\sqrt{n+2}+\sqrt{n+1})(\sqrt{n+1}+\sqrt{n})} \\ &= \frac{-2}{(\sqrt{n+2}+\sqrt{n+1})(\sqrt{n+2}+\sqrt{n})(\sqrt{n+1}+\sqrt{n})} \end{aligned} .

Therefore lim n n 3 / 2 ( n + 2 2 n + 1 + n ) = lim n 2 n 3 / 2 ( n + 2 + n + 1 ) ( n + 2 + n ) ( n + 1 + n ) = lim n 2 ( 1 + 2 n + 1 + 1 n ) ( 1 + 2 n + 1 ) ( 1 + 1 n + 1 ) = 2 ( 1 + 0 + 1 + 0 ) ( 1 + 0 + 1 ) ( 1 + 0 + 1 ) = 2 2 3 = 1 4 = 0.25 \begin{aligned} \lim_{n\to\infty} n^{3/2}\left(\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n}\right) &= \lim_{n\to\infty} \frac{-2n^{3/2}}{(\sqrt{n+2}+\sqrt{n+1})(\sqrt{n+2}+\sqrt{n})(\sqrt{n+1}+\sqrt{n})} \\[1.5ex] &= \lim_{n\to\infty} \frac{-2}{\left(\sqrt{1+\frac{2}{n}}+\sqrt{1+\frac{1}{n}}\right)\left(\sqrt{1+\frac{2}{n}}+1\right)\left(\sqrt{1+\frac{1}{n}}+1\right)} \\[1.5ex] &= \frac{-2}{(\sqrt{1+0}+\sqrt{1+0})(\sqrt{1+0}+1)(\sqrt{1+0}+1)} \\ &= \frac{-2}{2^3} = \boxed{-\frac{1}{4} = -0.25} \end{aligned}

L = lim n n 3 2 ( n + 2 2 n + 1 + n ) = lim n n 2 ( 1 + 2 n 2 1 + 1 n + 1 ) By Taylor series expansion = lim n n 2 ( ( 1 + 1 n 1 2 n 2 + 1 2 n 3 ) 2 ( 1 + 1 2 n 1 8 n 2 + 1 16 n 3 ) + 1 ) = lim n n 2 ( 1 4 n 2 + 3 8 n 3 ) = 1 4 = 0.25 \begin{aligned} L & = \lim_{n \to \infty} n^\frac 32 \left(\sqrt{n+2}-2\sqrt{n+1} + \sqrt n\right) \\ & = \lim_{n \to \infty} n^2 \left({\color{#3D99F6}\sqrt{1+\frac 2n}}-2{\color{#3D99F6}\sqrt{1+\frac 1n}} +1\right) \qquad \qquad \small \color{#3D99F6} \text{By Taylor series expansion} \\ & = \lim_{n \to \infty} n^2 \left({\color{#3D99F6}\left(1+\frac 1n - \frac 1{2n^2} + \frac 1{2n^3}-\cdots\right)}-2{\color{#3D99F6}\left(1+\frac 1{2n} - \frac 1{8n^2} + \frac 1{16n^3}-\cdots\right)} +1\right) \\ & = \lim_{n \to \infty} n^2 \left(-\frac 1{4n^2} + \frac {3}{8n^3} - \cdots\right) \\ & = - \frac 14 = \boxed{-0.25} \end{aligned}

@Chew-Seong Cheong I have a doubt sir, the expansion which you used, isn't it known as the fractional Binomial Theorem?? Or is it just a name given to the taylor series, kind of like a special case??

Aaghaz Mahajan - 3 years ago

Log in to reply

I am assuming they are the same thing.

Chew-Seong Cheong - 3 years ago

Log in to reply

@Chew-Seong Cheong Oh I see....!! Well, yes after proceeding in the general way of finding the Taylor Expansion of (1+x)^n we get the fractional Binomial Theorem only....!!

Aaghaz Mahajan - 3 years ago

On your second line onwards, it's much natural to let n = 1 x n = \frac1x , then apply L'Hôpital's rule .

Pi Han Goh - 3 years ago

Log in to reply

Yes, thanks.

Chew-Seong Cheong - 2 years, 12 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...