Interesting Limit (13)

Calculus Level 5

lim n 1 2018 + 2 2018 + + n 2018 n 2018 n 2019 = ? \large\lim_{n\to\infty}\frac {1^{2018}+2^{2018}+\cdots+n^{2018}}{n^{2018}}-\frac n{2019}=\, ?


Inspiration


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Naren Bhandari
Jun 15, 2018

lim n 1 2018 + 2 2018 + n 2018 n 2018 n 2019 = lim n 2019 ( 1 2018 + 2 2018 + + n 2018 ) n 2019 2019 n 2018 = \lim_{n\to \infty} \dfrac{1^{2018} +2^{2018} +\cdots n^{2018} }{n^{2018}}-\dfrac{n}{2019} =\lim_{n\to \infty}\dfrac{2019\left(1^{2018} +2^{2018} +\cdots +n^{2018}\right)-n^{2019}}{2019n^{2018}}=\dfrac{\infty}{\infty} Let a n = 2019 ( 1 2018 + 2 2018 + + n 2018 ) n 2019 a_n =2019\left(1^{2018} +2^{2018} +\cdots +n^{2018}\right)-n^{2019} and b n = 2019 n 2018 b_n = 2019n^{2018} . To evalute the limit we apply Stolz-Cesàro Theorem 1 . Then lim n a n b n = lim n a n + 1 a n b n + 1 b n = lim n 2019 ( n + 1 ) 2018 ( n + 1 ) 2019 + n 2019 2019 ( n + 1 ) 2018 2019 n 2018 lim n a n b n = 1 2 \lim_{n\to \infty} \dfrac{a_n}{b_n} =\lim_{n\to \infty} \dfrac{a_{n+1} -a_n}{b_{n+1} -b_n}=\lim_{n\to \infty} \dfrac{2019(n+1)^{2018}-(n+1)^{2019} + n^{2019}}{2019(n+1)^{2018}- 2019n^{2018}} \\ \lim_{n\to \infty} \dfrac{a_n}{b_n} = \boxed{\dfrac{1}{2}}


Note: L = lim n 2019 r = 0 2018 ( 2018 r ) n 2018 r + n 2019 k = 0 2019 ( 2019 k ) n 2019 k 2019 m = 0 2018 ( 2018 m ) n 2018 m 2019 n 2018 L = lim n 2019 ( n 2018 + 2018 n 2017 + 2018 ! 2 ! . 2016 ! n 2016 + + 1 ) + n 2019 ( n 2019 + 2019 n 2018 + 2019 ! 2 ! . 2017 ! n 2017 + + 1 ) 2019 ( n 2018 + 2018 n 2017 + 2018 ! 2 ! . 2016 ! n 2016 + + 1 ) 2019 n 2018 L = lim n 2018.2019 n 2017 + + 2019 2019 ! 2 ! . 2017 ! n 2017 1 2019.2018 n 2017 + 2018 ! 2 ! . 2017 ! n 2016 + + 1 = 2019.2018 2019 ! 2 ! . 2017 ! 2019.2018 = 2019.2018 ( 1 1 2 ) 2019.2018 = 1 2 \begin{aligned} L & = \lim_{n\to \infty} \dfrac{2019\displaystyle \sum_{r=0}^{2018}\binom{2018}{r}n^{2018-r} +n^{2019} -\displaystyle\sum_{k=0}^{2019}\binom{2019}{k}n^{2019-k}}{2019\displaystyle\sum_{m=0}^{2018}\binom{2018}{m}n^{2018-m}-2019n^{2018}} \\ L& = \lim_{n\to \infty}\dfrac{2019\left(n^{2018} +2018n^{2017} +\dfrac{2018!}{2!.2016!}n^{2016}+\cdots +1\right )+ n^{2019} -\left(n^{2019}+2019n^{2018} + \dfrac{2019!}{2!.2017!} n^{2017}+\cdots +1\right) }{2019\left(n^{2018} +2018n^{2017} +\dfrac{2018!}{2!.2016!}n^{2016}+\cdots +1 \right)-2019n^{2018}} \\ L & = \lim_{n\to \infty}\dfrac{2018.2019n^{2017} + \cdots +2019 -\dfrac{2019!}{2!.2017!}n^{2017} - \cdots -1}{2019.2018 n^{2017} + \dfrac{2018!}{2!.2017!} n^{2016}+\cdots +1} =\dfrac{2019.2018 - \dfrac{2019!}{2!.2017!}}{2019.2018}=\dfrac{2019.2018\left(1-\dfrac{1}{2}\right)}{2019.2018}=\boxed{ \dfrac{1}{2} }\end{aligned}

Zico Quintina
Jun 14, 2018

The summation formulas for the first several powers of k k are

k = 1 n k = n ( n + 1 ) 2 = n 2 2 + n 2 k = 1 n k 2 = n ( n + 1 ) ( 2 n + 1 ) 6 = n 3 3 + n 2 2 + n 6 k = 1 n k 3 = n 2 ( n + 1 ) 2 4 = n 4 4 + n 3 2 + n 2 4 k = 1 n k 4 = n ( n + 1 ) ( 2 n + 1 ) ( 3 n 2 + 3 n + 1 ) 30 = n 5 5 + n 4 2 + n 3 3 n 30 k = 1 n k 5 = n 2 ( n + 1 ) 2 ( 2 n 2 + 2 n 1 ) 12 = n 6 6 + n 5 2 + 5 n 4 12 n 2 12 \begin{aligned} \sum_{k=1}^n k \ \ &= \frac{n(n+1)}2 = \frac{n^2}{2} + \frac{n}{2} \\ \sum_{k=1}^n k^2 &= \frac{n(n+1)(2n+1)}6 = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6} \\ \sum_{k=1}^n k^3 &= \frac{n^2(n+1)^2}{4} = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4} \\ \sum_{k=1}^n k^4 &= \frac{n(n+1)(2n+1)(3n^2+3n+1)}{30} = \frac{n^5}{5} + \frac{n^4}{2} + \frac{n^3}{3} - \frac{n}{30} \\ \sum_{k=1}^n k^5 &= \frac{n^2(n+1)^2(2n^2+2n-1)}{12} = \frac{n^6}{6} + \frac{n^5}{2} + \frac{5n^4}{12} - \frac{n^2}{12} \end{aligned}

From the above we notice that the first two terms in the formula for k = 1 n k a \displaystyle \sum_{k=1}^n k^a appear to be k a + 1 a + 1 + k a 2 \dfrac{k^{a+1}}{a+1} + \dfrac{k^a}{2} , and the remaining terms are O ( k a 1 ) O \left( k^{a-1} \right) .

This is indeed the case, which can be proven with Faulhaber's formula, written about in the wiki Sum of n, n², or n³ .

\\

Armed with this result, we tackle the given limit:

lim n 1 2018 + 2 2018 + 3 2018 + . . . . + n 2018 n 2018 n 2019 = lim n n 2019 2019 + n 2018 2 + O ( n 2017 ) n 2018 n 2019 = lim n ( n 2019 + 1 2 + O ( 1 n ) ) n 2019 = 1 2 \begin{aligned} &\quad \lim_{n \to \infty} \frac{1^{2018} + 2^{2018} + 3^{2018} + .... + n^{2018}}{n^{2018}} - \frac{n}{2019} \\ \\ &= \lim_{n \to \infty} \frac{ \frac{n^{2019}}{2019} + \frac{n^{2018}}{2} + O \left( n^{2017} \right) }{n^{2018}} - \frac{n}{2019} \\ \\ &= \lim_{n \to \infty} \left( \frac{n}{2019} + \frac{1}{2} + O \left( \frac{1}{n} \right) \right) - \frac{n}{2019} = \boxed{\dfrac{1}{2}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...