Interesting Limit (16)

Calculus Level 4

lim n n 3 ( ( n + 1 ) sin 1 n + 1 n sin 1 n ) = ? \large\lim_{n\to\infty}n^3\left((n+1)\sin\frac 1{n+1}-n\sin\frac 1n\right)=\, ?


The answer is 0.33333.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Relevant wiki: Maclaurin Series

L = lim n n 3 ( ( n + 1 ) sin 1 n + 1 n sin 1 n ) Using Maclaurin series = lim n n 3 ( ( n + 1 ) ( 1 n + 1 1 3 ! ( n + 1 ) 3 + 1 5 ! ( n + 1 ) 5 + ) n ( 1 n 1 3 ! n 3 + 1 5 ! n 5 + ) ) = lim n ( ( n 3 n 3 3 ! ( n + 1 ) 2 + n 3 5 ! ( n + 1 ) 4 + ) ( n 3 n 3 3 ! n 2 + n 3 5 ! n 4 + ) ) = lim n ( n 3 3 ! n 2 n 3 3 ! ( n + 1 ) 2 n 3 5 ! n 4 0 + n 3 5 ! ( n + 1 ) 4 0 + n 3 7 ! n 6 0 n 3 7 ! ( n + 1 ) 6 0 + ) = lim n n 3 ( 2 n + 1 ) 6 n 2 ( n + 1 ) 2 = lim n 2 n 2 + n 6 n 2 + 12 n + 6 = lim n 2 + 1 n 6 + 12 n + 6 n 2 = 1 3 0.333 \begin{aligned} L & = \lim_{n \to \infty} n^3\left((n+1){\color{#3D99F6}\sin \frac 1{n+1}} - n {\color{#3D99F6}\sin \frac 1n} \right) & \small \color{#3D99F6} \text{Using Maclaurin series} \\ & = \lim_{n \to \infty} n^3\left((n+1){\color{#3D99F6}\left(\frac 1{n+1} - \frac 1{3!(n+1)^3} + \frac 1{5!(n+1)^5}+\cdots \right)} - n {\color{#3D99F6}\left(\frac 1n - \frac 1{3!n^3} + \frac 1{5!n^5}+\cdots \right)} \right) \\ & = \lim_{n \to \infty} \left( \left(n^3 - \frac {n^3}{3!(n+1)^2} + \frac {n^3}{5!(n+1)^4}+\cdots \right) - \left(n^3 - \frac {n^3}{3!n^2} + \frac {n^3}{5!n^4}+\cdots \right)\right) \\ & = \lim_{n \to \infty} \left(\frac {n^3}{3!n^2} - \frac {n^3}{3!(n+1)^2} - {\color{#D61F06} \cancel{\frac {n^3}{5!n^4}}^0 + \cancel{\frac {n^3}{5!(n+1)^4}}^0 + \cancel{ \frac {n^3}{7!n^6}}^0 - \cancel{\frac {n^3}{7!(n+1)^6}}^0 + \cdots } \right) \\ & = \lim_{n \to \infty} \frac {n^3(2n+1)}{6n^2(n+1)^2} = \lim_{n \to \infty} \frac {2n^2+n}{6n^2 + 12n+6} = \lim_{n \to \infty} \frac {2+\frac 1n}{6 + \frac {12}n + \frac 6{n^2}} = \frac 13 \approx \boxed{0.333} \end{aligned}

Brian Moehring
Aug 7, 2018

Note that as k k \to \infty , we have sin 1 k = 1 k 1 6 k 3 + o ( k 4 ) \sin\frac{1}{k} = \frac{1}{k} - \frac{1}{6k^3} + o(k^{-4}) so in particular, ( n + 1 ) sin 1 n + 1 n sin 1 n = ( n + 1 ) ( 1 n + 1 1 6 ( n + 1 ) 3 + o ( n 4 ) ) n ( 1 n 1 6 n 3 + o ( n 4 ) ) = 1 6 n 2 1 6 ( n + 1 ) 2 + o ( n 3 ) = 2 n + 1 6 n 2 ( n + 1 ) 2 + o ( n 3 ) = 1 3 n ( n + 1 ) 2 + o ( n 3 ) \begin{aligned} (n+1)\sin\frac{1}{n+1} - n\sin\frac{1}{n} &= (n+1)\left(\frac{1}{n+1} - \frac{1}{6(n+1)^3} + o(n^{-4})\right) - n\left(\frac{1}{n} - \frac{1}{6n^3} + o(n^{-4})\right) \\ &= \frac{1}{6n^2} - \frac{1}{6(n+1)^2} + o(n^{-3}) \\ &= \frac{2n + 1}{6n^2(n+1)^2} + o(n^{-3}) \\ &= \frac{1}{3n(n+1)^2} + o(n^{-3}) \end{aligned}

Therefore lim n n 3 ( ( n + 1 ) sin 1 n + 1 n sin 1 n ) = lim n ( n 2 3 ( n + 1 ) 2 + o ( 1 ) ) = 1 3 + 0 0.333333 \begin{aligned} \lim_{n\to\infty} n^3\left((n+1)\sin\frac{1}{n+1} - n\sin\frac{1}{n}\right) &= \lim_{n\to\infty} \left(\frac{n^2}{3(n+1)^2} + o(1)\right) \\ &= \frac{1}{3} + 0 \\ &\approx \boxed{0.333333} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...