Interesting Limit (18)

Calculus Level 3

Let a n = 0 1 x n 1 x 2 d x \displaystyle a_n=\int_0^1x^n\sqrt{1-x^2}\,dx . Find lim n a n + 1 a n \displaystyle \lim_{n\to\infty}\frac{a_{n+1}}{a_n} .


Resource: The Advanced Mathematics Examination of NPEE 2019.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Otto Bretscher
Dec 23, 2018

Integrating by parts, we find a n + 2 a n = n + 1 n + 4 \frac{a_{n+2}}{a_n}=\frac{n+1}{n+4} so lim n a n + 2 a n = 1 \lim_{n \to \infty}\frac{a_{n+2}}{a_n}=1 . Since the sequence a n a_n is decreasing, we have lim n a n + 1 a n = 1 \lim_{n \to \infty}\frac{a_{n+1}}{a_n}=\boxed{1} as well.

Or...........we can simply find the closed form using Beta Function .............!!!!

Aaghaz Mahajan - 2 years, 5 months ago

Log in to reply

But isn't my solution simpler? ;)

Otto Bretscher - 2 years, 5 months ago

Log in to reply

Yes...obviously!!! Your solution does not require heavy machinery........!!! Just like most of your solutions are.........!!!! :)

Aaghaz Mahajan - 2 years, 5 months ago

Well not really the answer I hoped for. Care to let us see the integration by parts, because I seemed to fail there.

Peter van der Linden - 2 years, 5 months ago

Log in to reply

I'm currently enjoying my winter vacation in the Caribbean, which leaves me very little time to spend on Brilliant. Let me just give a few hints:

If we let x = sin t x=\sin t and I n = 0 π 2 sin n t d t I_n= \int_0^{\frac{\pi}{2}}\sin^n t\ dt , then, by parts, I n + 2 = n + 1 n + 2 I n I_{n+2}=\frac{n+1}{n+2}I_n , so a n = I n n + 2 a_n=\frac{I_n}{n+2} and a n + 2 = I n + 2 n + 4 = ( n + 1 ) I n ( n + 4 ) ( n + 2 ) a_{n+2}=\frac{I_{n+2}}{n+4}=\frac{(n+1)I_n}{(n+4)(n+2)} , and the claim follows.

Otto Bretscher - 2 years, 5 months ago
Agni Purani
Jan 18, 2019
  • Substitute x = s i n θ x = sin\theta
  • so d x = c o s θ d θ dx = cos\theta d\theta
  • a n = 0 π / 2 s i n n θ c o s 2 θ d θ \therefore a_{n} = \int_{0}^{\pi/2}sin^{n} \theta cos^{2}\theta d\theta
  • Then we can use walli's formula and canceling out the gamma function, 0 π 2 s i n m ( x ) c o s n ( x ) d x = Γ ( m + 1 2 ) Γ ( n + 1 2 ) Γ ( m + n + 2 2 ) \int_{0}^{\frac{\pi }{2}}sin^{m}(x)cos^{n}(x) dx = \frac{\Gamma (\frac{m+1}{2}) \Gamma (\frac{n+1}{2})}{\Gamma (\frac{m+n +2}{2})}

Can you show lust step explicitly, please?

Ferenets Roman - 2 years, 4 months ago

Yes, I have added an edit. I had made a mistake. But you can proceed this way Simplifying gamma in terms of factorials, you would get the answer.

Agni Purani - 2 years, 4 months ago

Log in to reply

Thank you, sir.Wasn't sure that i did it right.

Ferenets Roman - 2 years, 4 months ago
Joe Mansley
Mar 17, 2021

For large n n , a n 0 1 x n d x = 1 n + 1 a_n \approx \int_0^1 x^n dx=\frac{1}{n+1} . So the ratio tends to 1 1 .

A brute force: 0 1 1 x 2 x n d x \int_0^1 \sqrt{1-x^2} x^n \, dx for n n from 1 to 30: { 1 3 , π 16 , 2 15 , π 32 , 8 105 , 5 π 256 , 16 315 , 7 π 512 , 128 3465 , 21 π 2048 , 256 9009 , 33 π 4096 , 1024 45045 , 429 π 65536 , 2048 109395 , 715 π 131072 , 32768 2078505 , 2431 π 524288 , 65536 4849845 , 4199 π 1048576 , 262144 22309287 , 29393 π 8388608 , 524288 50702925 , 52003 π 16777216 , 4194304 456326325 , 185725 π 67108864 , 8388608 1017958725 , 334305 π 134217728 , 33554432 4508102925 , 9694845 π 4294967296 } \left\{\frac{1}{3},\frac{\pi }{16},\frac{2}{15},\frac{\pi }{32},\frac{8}{105},\frac{5 \pi }{256},\frac{16}{315},\frac{7 \pi }{512},\frac{128}{3465},\frac{21 \pi }{2048},\frac{256}{9009},\frac{33 \pi }{4096},\frac{1024}{45045},\frac{429 \pi }{65536},\frac{2048}{109395},\frac{715 \pi }{131072},\frac{32768}{2078505},\frac{2431 \pi }{524288},\frac{65536}{4849845},\frac{4199 \pi }{1048576},\frac{262144}{22309287}, \\ \frac{29393 \pi }{8388608},\frac{524288}{50702925},\frac{52003 \pi }{16777216},\frac{4194304}{456326325},\frac{185725 \pi }{67108864},\frac{8388608}{1017958725},\frac{334305 \pi }{134217728},\frac{33554432}{4508102925},\frac{9694845 \pi }{4294967296}\right\} .

A little of sequence matching gives the general formula of the sequence of integrals: π ( n 2 1 2 ) ! 4 ( n 2 + 1 ) ! \frac{\sqrt{\pi } \left(\frac{n}{2}-\frac{1}{2}\right)!}{4 \left(\frac{n}{2}+1\right)!} .

The formula for the problem's quotient is n 2 ! n + 2 2 ! n 1 2 ! n + 3 2 ! \frac{\frac{n}{2}! \frac{n+2}{2}!}{\frac{n-1}{2}! \frac{n+3}{2}!} giving a limit of 1.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...