Interesting Limit (19)

Calculus Level 4

Given that sequence { a n } \{a_n\} satisfies a 1 ( x ) = x a_1(x)=x and a n + 1 ( x ) = x a n ( x ) a_{n+1}(x)=x^{a_n(x)} , find lim x 0 + a 2019 ( x ) \displaystyle\lim_{x\to 0^+}a_{2019}(x) .


Bonus: Find lim x 0 + a n ( x ) . \displaystyle\lim_{x\to 0^+}a_n(x).

0 0 1 1 \infty 2 2 1 -1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 31, 2018

We note that

lim x 0 + a 1 ( x ) = lim x 0 + x = 0 lim x 0 + a 2 ( x ) = lim x 0 + x x = 1 lim x 0 + a 3 ( x ) = lim x 0 + x x x = 0 1 = 0 lim x 0 + a 4 ( x ) = lim x 0 + x x x x = 1 = \begin{aligned} \lim_{x \to 0^+} a_1(x) & = \lim_{x \to 0^+} x = 0 \\ \lim_{x \to 0^+} a_2(x) & = \lim_{x \to 0^+} x^x = 1 \\ \lim_{x \to 0^+} a_3(x) & = \lim_{x \to 0^+} x^{x^x} = 0^1 = 0 \\ \lim_{x \to 0^+} a_4(x) & = \lim_{x \to 0^+} x^{x^{x^x}} = 1 \\ \cdots & = \cdots \end{aligned}

lim x 0 + a n ( x ) = { 0 if n is odd. 1 if n is even. \implies \displaystyle \lim_{x \to 0^+} a_n(x) = \begin{cases} 0 & \text{if }n \text{ is odd.} \\ 1 & \text{if }n \text{ is even.} \end{cases} . Therefore, a 2019 ( x ) = 1 a_{2019}(x) = \boxed 1 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...