Interesting Limit (21)

Calculus Level 3

Let A n A_n and G n G_n denote the arithmetic mean and geometric mean of ( n 0 ) , ( n 1 ) , ( n 2 ) , , ( n n ) \dbinom n0,\dbinom n1, \dbinom n2, \dots,\dbinom nn respectively.

Find lim n G n A n n \displaystyle\lim_{n\to\infty} \sqrt[n]{\frac{G_n}{A_n}} .


Resource: AMSS Summer Camp 2017.

e 2 \frac {\sqrt e}2 2 e \frac 2{\sqrt e} e \sqrt e 1 e \frac 1{\sqrt e}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Naren Bhandari
Jan 26, 2019

We have the formula for a , b N a,b\in\mathbb N and setting a = b = 1 a=b=1 we deduce ( a + b ) n = r = 0 n ( n r ) a n r b r = r = 0 n ( n r ) = 2 n (a+b)^n=\sum_{r=0}^{n}\binom{n}{r}a^{n-r} b^r= \sum_{r=0}^{n}\binom{n}{r}=2^n

and hence our A n n = 2 n n \sqrt[n]A_n=\dfrac{2}{\sqrt[n]n} . Let us denote X n = r = 1 n 1 ( n r ) = 1 ( n ! ) n + 1 ( r = 1 n r r ) 2 X_n= \prod_{r=1}^{n-1}\binom{n}{r}=\dfrac{1}{(n!)^{n+1}}\left(\prod_{r=1}^n r^r\right)^2 Also we have the approximation for 1 ( n ! ) n + 1 ( r = 1 n r r ) 2 1 ( n ! ) n + 1 ( A n 6 n 2 + 6 n + 1 12 e n 2 4 ) 2 \dfrac{1}{(n!)^{n+1}}\left(\prod_{r=1}^{n} r^r\right)^2 \\ \approx\dfrac{1}{(n!)^{n+1}}\left( A n^{\frac{6n^2+6n+1}{12}}e^{-\frac{n^2}{4}}\right)^2 using the Stirling approximation for n ! n! and simplifying we have X n A 2 e n 2 + 2 n 2 ( 2 π ) n + 1 2 n 3 n + 2 6 X_n\approx \dfrac{A^2e^{\frac{n^2+2n}{2}}}{(2\pi)^{\frac{n+1}{2}}n^{\frac{3n+2}{6}}} where A A is Glashier-Kinkelin Constant and required we have G n n = ( X n n ) 1 n A 2 n 2 e 1 + n 2 n 2 π n 2 n \sqrt[n]G_n =\left(\sqrt[n]{X_n} \right)^{\frac{1}{n}}\approx \dfrac{A^{\frac{2}{n^2}}e^{\frac{1+n}{2n}}}{\sqrt[2n]{2\pi n}} Therefore our limit lim n ( G n A n ) 1 n = lim n n n 2 A 2 n 2 e 1 + n 2 n 2 π n 2 n = e 1 2 2 \lim_{n\to \infty}\left(\dfrac{G_n}{A_n}\right)^{\frac{1}{n}}=\lim_{n\to \infty}\dfrac{\sqrt[n] n }{2}\cdot \dfrac{A^{\frac{2}{n^2}}e^{\frac{1+n}{2n}}}{\sqrt[2n]{2\pi n}}=\dfrac{e^{\frac{1}{2}}}{2}

I used Riemann's sum... BTW, what is the limit of the generalized mean(we took m = 1 , 0 , 1 , 2 m=-1,0,1,2 only) case?

X X - 2 years, 3 months ago

It is Glaisher–Kinkelin constant and not what you have written ..

Jitender Sharma - 2 years, 2 months ago

Naren is correct

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...