Interesting Limit (23)

Calculus Level 4

Let Q n Q_n denote the quadratic mean of ( n 0 ) , ( n 1 ) , ( n 2 ) , , ( n n ) . \dbinom n0, \dbinom n1, \dbinom n2, \dots,\dbinom nn.

Find lim n Q n n . \displaystyle\lim_{n\to\infty}\sqrt[n]{Q_n}.


Inspiration

e e 2 π \pi 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jan 27, 2019

We note that Q n Q_n is defined as follows:

Q n = k = 1 n ( n k ) 2 n By Vandermonde’s identity: ( m + n k ) = r = 0 n ( m r ) ( n k r ) = ( 2 n n ) n putting m = k = n . \begin{aligned} Q_n & = \sqrt{\dfrac {\sum_{k=1}^n \binom nk^2}n} & \small \color{#3D99F6} \text{By Vandermonde's identity: }\binom {m+n}k = \sum_{r=0}^n \binom mr \binom n{k-r} \\ & = \sqrt{\dfrac {\binom {2n}n}n} & \small \color{#3D99F6} \text{putting }m=k=n. \end{aligned}

Then, we have:

lim n Q n n = lim n ( 2 n n ) n 2 n = lim n ( ( 2 n ) ! n ( n ! ) 2 ) 1 2 n By Stirling’s formula: n ! 2 π n ( n e ) n = lim n ( 4 π n ( 2 n e ) 2 n n ( 2 π n ) ( n e ) 2 n ) 1 2 n = lim n ( 2 2 n n π n ) 1 2 n = lim n 2 π 1 4 n n 3 4 n Note that lim n π 1 4 n = 1 = 2 and lim n n 3 4 n = 1 (see note). \begin{aligned} \lim_{n \to \infty} \sqrt[n]{Q_n} & = \lim_{n \to \infty} \sqrt[2n]{\dfrac {\binom {2n}n}n} \\ & = \lim_{n \to \infty} \left(\frac {(2n)!}{n(n!)^2} \right)^{\frac 1{2n}} & \small \color{#3D99F6} \text{By Stirling's formula: }n! \sim \sqrt{2\pi n}\left(\frac ne\right)^n \\ & = \lim_{n \to \infty} \left(\frac {\sqrt{4\pi n}\left(\frac {2n}e\right)^{2n}}{n(2\pi n)\left(\frac ne \right)^{2n}} \right)^{\frac 1{2n}} \\ & = \lim_{n \to \infty} \left( \frac {2^{2n}}{n\sqrt{\pi n}} \right)^{\frac 1{2n}} \\ & = \lim_{n \to \infty} \frac 2{\color{#3D99F6}\pi^{\frac 1{4n}} \color{#D61F06} n^{\frac 3{4n}}} & \small \color{#3D99F6} \text{Note that }\lim_{n \to \infty} \pi^{\frac 1{4n}} = 1 \\ & = \boxed 2 & \small \color{#D61F06} \text{and }\lim_{n \to \infty} n^{\frac 3{4n}} = 1 \text{ (see note).} \end{aligned}

Note:

lim n n 3 4 n = lim n exp ( 3 4 n ln ( n ) ) where exp ( x ) = e x = exp ( lim n 3 ln ( n ) 4 n ) A / case, L’H o ˆ pital’s rule applies. = exp ( lim n 3 n 4 ) Differentiate up and down w.r.t. n . = e 0 = 1 \begin{aligned} \lim_{n \to \infty} n^{\frac 3{4n}} & = \lim_{n \to \infty} \exp \left(\frac 3{4n} \ln (n) \right) & \small \color{#3D99F6} \text{where }\exp (x) = e^x \\ & = \exp \left(\color{#3D99F6} \lim_{n \to \infty} \frac {3\ln (n)}{4n} \right) & \small \color{#3D99F6} \text{A }\infty/\infty \text{ case, L'Hôpital's rule applies.} \\ & = \exp \left(\color{#3D99F6} \lim_{n \to \infty} \frac {\frac 3n}4 \right) & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. }n. \\ & = e^0 = 1 \end{aligned}


References:

Wow! I did the same thing.... well without knowing a thing about Vandermonde's identity(means I didnt knew it by name) or Stirling's Formula. Nice question!

A Former Brilliant Member - 2 years, 4 months ago
Naren Bhandari
Jan 26, 2019

By the definition of the quadratic mean we Q m n = ( 1 n r = 0 n ( ( n r ) ) 2 ) 1 2 n = ( 4 n n ) 1 2 n = 2 n 2 n \sqrt[n]{Q_m} =\left(\dfrac{1}{n}\sum_{r=0}^{n}\left(\binom{n}{r}\right)^2\right)^{\frac{1}{2n}}=\left(\dfrac{4^n}{n}\right)^{\frac{1}{2n}}=\dfrac{2}{\sqrt[2n]{n}} Thus the limit is 2 lim n n 1 2 n = 2 lim n exp ( log n 2 n ) = 2 e 0 = 2 2\lim_{n\to \infty}n^{-\frac{1}{2n}}=2\lim_{n\to \infty}\exp\left(-\dfrac{\log n}{2n}\right)=2e^{-0}=2

Here is the proof for the first part

I’m sorry if I sound silly but in the first equation, quadratic mean is the “sum of squares”, not the “square of sum”.🤨

Vedant Saini - 2 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...