Interesting Limit (24)

Calculus Level 3

Let H n H_n denote the harmonic mean of ( n 0 ) , ( n 1 ) , ( n 2 ) , , ( n n ) . \dbinom n0, \dbinom n1, \dbinom n2, \dots,\dbinom nn.

Find lim n H n n . \displaystyle\lim_{n\to\infty}\sqrt[n]{H_n}.


Inspiration

2 2 0 0 1 1 e e

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jan 28, 2019

H n H_n is defined as follows:

H n = n 1 ( n 0 ) + 1 ( n 1 ) + 1 ( n 2 ) + + 1 ( n n ) = n 1 + 1 n + 2 n ( n 1 ) + + 2 n ( n 1 ) + 1 n + 1 < n 2 for n 2 \begin{aligned} H_n & = \frac n{\frac 1{\binom n0} + \frac 1{\binom n1} + \frac 1{\binom n2} + \cdots+ \frac 1{\binom nn}} = \frac n{1+\frac 1n + \frac 2{n(n-1)} + \cdots + \frac 2{n(n-1)} + \frac 1n + 1} < \frac n2 & \small \color{#3D99F6} \text{for }n \ge 2 \end{aligned}

This implies that H n n 2 H_n \sim \dfrac n2 as n n \to \infty and

lim n H n n = lim n ( n 2 ) 1 n = lim n exp ( 1 n ( ln n ln 2 ) ) where exp ( x ) = e x = exp ( lim n ln n ln 2 n ) A / case, L’H o ˆ pital’s rule applies. = exp ( lim n 1 n 1 ) Differentiate up and down w.r.t. n . = e 0 = 1 \begin{aligned} \lim_{n \to \infty} \sqrt[n]{H_n} & = \lim_{n \to \infty} \left(\frac n2\right)^{\frac 1n} \\ & = \lim_{n \to \infty} \exp \left(\frac 1n (\ln n - \ln 2)\right) & \small \color{#3D99F6} \text{where }\exp (x) = e^x \\ & = \exp \left(\color{#3D99F6} \lim_{n \to \infty} \frac {\ln n - \ln 2}n \right) & \small \color{#3D99F6} \text{A }\infty / \infty \text{ case, L'Hôpital's rule applies.} \\ & = \exp \left(\lim_{n \to \infty} \frac {\frac 1n}1 \right) & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. }n. \\ & = e^0 = \boxed 1 \end{aligned}

I thought the numerator of the harmonic mean should be n+1?

KGSH bteam Beast O_o - 2 years, 2 months ago

Log in to reply

Yes, you are right. Now I have to see how to fix this.

Chew-Seong Cheong - 2 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...