Interesting Limit (25)

Calculus Level 4

lim n ( 1 + 1 1 2 ) ( 1 + 1 2 2 ) ( 1 + 1 3 2 ) ( 1 + 1 n 2 ) \lim_{n\to\infty}\left (1+\frac 1{1^2}\right )\left (1+\frac 1{2^2}\right )\left (1+\frac 1{3^2}\right )\cdots\left(1+\frac 1{n^2}\right) Evaluate the limit above.

e π e π 2 π \frac{e^{\pi}-e^{-\pi}}{2\pi} e 2 π e 2 π 2 π \frac{e^{2\pi}-e^{-2\pi}}{2\pi} e 2 π e 2 π π \frac{e^{2\pi}-e^{-2\pi}}{\pi} e π e π π \frac{e^{\pi}-e^{-\pi}}{\pi}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rohan Shinde
Apr 8, 2019

Euler had earlier shown that sin x x = n = 1 ( 1 x 2 n 2 π 2 ) \displaystyle \frac {\sin x}{x}=\prod_{n=1}^{\infty} \left(1-\frac {x^2}{n^2\pi^2}\right) Setting x = i t x=it gives sin i t i t = n = 1 ( 1 + t 2 n 2 π 2 ) \displaystyle \frac {\sin it}{it}=\prod_{n=1}^{\infty} \left(1+\frac {t^2}{n^2\pi^2}\right)

Now using that sin x = e i x e i x 2 i \displaystyle \sin x=\frac {e^{ix}-e^{-ix}}{2i} and setting t = π t=\pi we get e π e π 2 π = n = 1 ( 1 + 1 n 2 ) = ξ \displaystyle \frac {e^{\pi}-e^{-\pi}}{2\pi}=\prod_{n=1}^{\infty} \left(1+\frac {1}{n^2}\right)=\xi Where ξ \xi is our required limit.

Same approach.........

Aaghaz Mahajan - 2 years, 2 months ago
Kris Hauchecorne
Apr 8, 2019

set this limit to L = (1+x²/1²) (1+x²/2²) (1+x²/3²)...

with x = 1

choose y so that x = iy/pi

then L = (1-y²/pi²) (1-y²/2²pi²)...

Euler showed this to be equal to sin(y)/y, which gives L = sin(y)/y

L = (exp(iy) - exp(-iy))/(2iy)

y = x pi/i, with x = 1

L = (exp(pi) - exp(-pi))/(2pi)

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...