Interesting Limit (27)

Calculus Level 5

lim x 0 + 1 ln x n = 1 1 n 2 x + n = ? \large\lim_{x\to0^+}\frac1{\ln x}\sum_{n=1}^\infty\frac1{n^2x+n}=\,?


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aareyan Manzoor
Jul 3, 2019

first by changing variables from x 1 x x\to \dfrac{1}{x} : lim x 0 + 1 ln x n = 1 1 n 2 x + n = lim x 1 ln x n = 1 x n 2 + n x = lim x 1 ln x n = 1 ( 1 n 1 n + x ) = lim x γ + ψ ( x + 1 ) ln x \lim_{x\to0^+}\frac1{\ln x}\sum_{n=1}^\infty\frac1{n^2x+n} =- \lim_{x\to\infty}\frac1{\ln x}\sum_{n=1}^\infty\dfrac{x}{n^2+nx} =-\lim_{x\to\infty}\frac1{\ln x}\sum_{n=1}^\infty\left(\dfrac{1}{n}-\dfrac{1}{n+x}\right)= -\lim_{x\to\infty}\frac{\gamma+\psi(x+1)}{\ln x} notice that the sum is just the defination of the digamma function . we know asymtopically ψ ( x + 1 ) = γ + H x ln x \psi(x+1) = -\gamma+ H_x\approx \ln x plugging this in we have lim x ψ ( x + 1 ) ln x = lim x γ + ln x ln x = 1 -\lim_{x\to\infty}\frac{\psi(x+1)}{\ln x} = -\lim_{x\to\infty}\frac{\gamma+\ln x}{\ln x} = \boxed{-1}

Solved it the same way!!!

Aaghaz Mahajan - 1 year, 11 months ago

n = 1 1 n 2 x + n ψ ( 0 ) ( 1 + 1 x ) + γ \sum _{n=1}^{\infty } \frac{1}{n^2 x+n} \Rightarrow \psi ^{(0)}\left(1+\frac{1}{x}\right)+\gamma

lim x 0 ψ ( 0 ) ( 1 + 1 x ) log ( x ) 1 \underset{x\to 0}{\text{lim}}\frac{\psi ^{(0)}\left(1+\frac{1}{x}\right)}{\log (x)} \Rightarrow -1

Can you explain more?

Micah Wood - 1 year, 11 months ago

See Gamma and PolyGamma .

Γ ( x ) x Γ ( x ) ψ ( 0 ) ( x ) \frac{\frac{\partial \Gamma (x)}{\partial x}}{\Gamma (x)} \Rightarrow \psi ^{(0)}(x)

ψ ( 0 ) ( x ) x ψ ( 1 ) ( x ) \frac{\partial \psi ^{(0)}(x)}{\partial x} \Rightarrow \psi ^{(1)}(x)

n = 1 m 1 n 2 x + n ψ ( 0 ) ( m + 1 x + 1 ) + ψ ( 0 ) ( m + 1 ) + ψ ( 0 ) ( 1 + 1 x ) + γ \sum _{n=1}^m \frac{1}{n^2 x+n} \Rightarrow -\psi ^{(0)}\left(m+\frac{1}{x}+1\right)+\psi ^{(0)}(m+1)+\psi ^{(0)}\left(1+\frac{1}{x}\right)+\gamma

The limit of a constant, any constant, over ln(x) as x goes to infinity is 0.

A Former Brilliant Member - 1 year, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...