Interesting Limit (29)

Calculus Level 5

lim a + 1 a 0 a tan 1 x tan 1 ( a x ) d x = π A B \lim_{a\to+\infty}\frac 1 a \int_0^a\tan^{-1}x \tan^{-1}(a-x)\,\mathrm dx=\frac{\pi^A}B

The equation above holds true for positive integers A A and B B . Find A + B A+B .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Carsten Meyer
May 24, 2021

Substitute x : = a y , d x = a d y x:=a y,\: dx=a\:dy : F ( a ) : = 1 a 0 a arctg ( x ) arctg ( a x ) d x = 1 a 0 1 arctg ( a y ) arctg ( a ( 1 y ) ) a d y = : 0 1 f a ( y ) d y F(a):=\frac{1}{a}\int_0^a\arctg(x)\arctg(a-x)\:dx=\cancel{\frac{1}{a}}\int_0^1\arctg(ay)\arctg(a(1-y))\cdot \cancel{a}\:dy=:\int_0^1 f_a(y)\:dy We note f a ( y ) π 2 4 = : f ( y ) |f_a(y)|\leq\frac{\pi^2}{4}=:f(y) integrable and f a ( y ) f ( y ) f_a(y)\rightarrow f(y) almost everywhere on [ 0 ; 1 ] [0;\:1] (only borders are exceptions). By dominated convergence , we have lim a F ( a ) = lim a 0 1 f a ( x ) d x = 0 1 f ( x ) d x = π 2 4 A + B = 2 + 4 = 6 \begin{aligned} \lim_{a\rightarrow\infty} F(a)&=\lim_{a\rightarrow\infty}\int_0^1 f_a(x)\:dx=\int_0^1 f(x)\:dx=\frac{\pi^2}{4}&&&\Rightarrow &&&& A+B&=2+4=\boxed{6} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...