n → ∞ lim n 2 k = 0 ∑ n ln ( k n ) = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Relevant wiki: Stolz–Cesàro theorem
L = n → ∞ lim n 2 k = 0 ∑ n ln ( k n ) = n → ∞ lim ( n + 1 ) 2 − n 2 k = 0 ∑ n + 1 ln ( k n + 1 ) − k = 0 ∑ n ln ( k n ) = n → ∞ lim 2 n + 1 k = 0 ∑ n ln ( k n ) ( k n + 1 ) + ln ( n + 1 n + 1 ) = n → ∞ lim 2 n + 1 k = 0 ∑ n ln n − k + 1 n + 1 = n → ∞ lim 2 n + 1 ( n + 1 ) ln ( n + 1 ) − k = 1 ∑ n + 1 ln k = n → ∞ lim ( 2 n + 1 ) − ( 2 n − 1 ) ( n + 1 ) ln ( n + 1 ) − n ln n − ln ( n + 1 ) = n → ∞ lim 2 ln ( ( 1 + n 1 ) n ) = 2 ln e = 0 . 5 Using Stolz-Ces a ˋ ro theorem Using Stolz-Ces a ˋ ro theorem again
Problem Loading...
Note Loading...
Set Loading...
k = 0 ∑ n lo g ( k n ) = lo g k = 0 ∏ n ( k n ) = lo g ( 2 ! × . . . × n ! ) 2 ( n ! ) n + 1 = lo g ( 2 3 − n × 3 5 − n × . . . × n 2 n − 1 − n ) = k = 2 ∑ n ( 2 k − 1 − n ) lo g k
Diving by n 2 we get three series: k = 2 ∑ n n 2 2 k lo g k − k = 2 ∑ n n 2 lo g k − k = 2 ∑ n n lo g k First, notice that ∑ k = 2 n n 2 lo g k = n 2 lo g ( n ! ) ≤ n 2 lo g ( n n ) = n lo g n → 0 so the middle term vanishes. Now, remembering Euler's summation formula in the form ∑ k = 2 n f ( k ) = ∫ 2 n f ( x ) d x + O ( f ( n ) ) , if we apply this to the functions f ( x ) = 2 x lo g x and f ( x ) = lo g ( x ) we notice that the error terms n 2 f ( n ) vanish in both cases. Thus we can say that in the limit: n → ∞ lim k = 2 ∑ n n 2 2 k lo g k − k = 2 ∑ n n lo g k = n → ∞ lim n 2 1 ∫ 2 n 2 x lo g x d x − n 1 ∫ 2 n lo g x d x = n → ∞ lim − 2 1 + lo g n + n 2 2 − lo g 4 − lo g n + 1 − n 2 − lo g 4 = − 2 1 + 1 = 2 1
Note: What has actually been proven is the asymptotic formula k = 0 ∑ n lo g ( k n ) = 2 n 2 + O ( n lo g n )