Interesting Limit (9)

Calculus Level 4

The limit A = lim n n ( B ( 1 n + 1 + 1 n + 2 + + 1 2 n ) ) \large A=\lim_{n\to\infty}n\left(B-\left(\frac 1{n+1}+\frac 1{n+2}+\cdots+\frac 1{2n}\right)\right) exists. Find e B A {\large e}^{\frac BA} .


Try a similar problem here .


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Brian Moehring
Jul 17, 2018

Relevant wiki: Taylor's Theorem (with Lagrange Remainder)

A necessary requirement for the existence of a limit of the form lim n n f ( n ) \lim_{n\to\infty} n\cdot f(n) is that lim n f ( n ) = 0 \lim_{n\to\infty} f(n) = 0 . Applying it here, we have B = lim n j = 1 n 1 n + j = lim n 1 n j = 1 n 1 1 + j n = 0 1 1 1 + x d x = ln ( 2 ) B = \lim_{n\to\infty} \sum_{j=1}^n \frac{1}{n+j} = \lim_{n\to\infty} \frac{1}{n} \sum_{j=1}^n \frac{1}{1+\frac{j}{n}} = \int_0^1 \frac{1}{1+x}\,dx = \ln(2)

Also, using the form of B B as an integral, we may let f ( x ) = 1 1 + x f(x) = \frac{1}{1+x} to write n ( B 1 n j = 1 n 1 1 + j n ) = n j = 1 n ( j 1 ) / n j / n ( 1 1 + x 1 1 + j n ) d x = n j = 1 n ( j 1 ) / n j / n ( f ( x ) f ( j n ) ) d x = n j = 1 n 1 2 f ( x j , n ) 1 n 2 for some x j , n ( j 1 n , j n ) [see the note] = 1 2 1 n j = 1 n f ( x j , n ) \begin{aligned} n\left(B - \frac{1}{n}\sum_{j=1}^n \frac{1}{1+\frac{j}{n}}\right) &= n\sum_{j=1}^n \int_{(j-1)/n}^{j/n} \left(\frac{1}{1+x} - \frac{1}{1+\frac{j}{n}}\right)\,dx \\ &= n\sum_{j=1}^n \int_{(j-1)/n}^{j/n} \left(f(x) - f\left(\frac{j}{n}\right)\right)\,dx \\ &= n\sum_{j=1}^n -\frac{1}{2}f'(x_{j,n})\cdot \frac{1}{n^2} \qquad \text{for some } x_{j,n} \in \left(\frac{j-1}{n}, \frac{j}{n}\right) & \textbf{[see the note]}\\ &= -\frac{1}{2} \cdot \frac{1}{n} \sum_{j=1}^n f'(x_{j,n}) \end{aligned}

Letting n n\to\infty , we find A = 1 2 lim n 1 n j = 1 n f ( x j , n ) = 1 2 0 1 f ( x ) d x = 1 2 ( f ( 1 ) f ( 0 ) ) = 1 2 ( 1 1 + 1 1 1 + 0 ) = 1 4 A = -\frac{1}{2} \lim_{n\to\infty} \frac{1}{n} \sum_{j=1}^n f'(x_{j,n}) = -\frac{1}{2} \int_0^1 f'(x)\,dx = -\frac{1}{2} \left(f(1) - f(0)\right) = -\frac{1}{2} \left(\frac{1}{1+1} - \frac{1}{1+0}\right) = \frac{1}{4}

Therefore e B / A = e 4 ln ( 2 ) = 16 e^{B/A} = e^{4\ln(2)} = \boxed{16}


Note : The line in my solution I marked to see this note is the only line that isn't straight forward. It is an immediate consequence of Taylor's theorem in the following form: If g ( x ) has a continuous first derivative, then a b g ( x ) d x = g ( b ) ( b a ) 1 2 g ( x 1 ) ( b a ) 2 = g ( a ) ( b a ) + 1 2 g ( x 2 ) ( b a ) 2 for some x 1 , x 2 ( a , b ) \text{If } g(x) \text{ has a continuous first derivative, then } \\ \int_a^b g(x)\,dx = g(b)(b-a) - \frac{1}{2}g'(x_1^*)(b-a)^2 = g(a)(b-a) + \frac{1}{2}g'(x_2^*)(b-a)^2 \\ \text{ for some } x_1^*, x_2^* \in(a,b)

X X
Apr 29, 2018

B = lim n ( 1 n + 1 + 1 n + 2 + + 1 2 n ) = ln ( 2 n ) ln n = ln 2 B=\displaystyle\lim_{n\to\infty}\left(\frac 1{n+1}+\frac 1{n+2}+\cdots+\frac 1{2n}\right)=\ln(2n)-\ln n=\ln2
A = lim n n ( B ( 1 n + 1 + 1 n + 2 + + 1 2 n ) ) A=\displaystyle\lim_{n\to\infty}n\left(B-\left(\frac 1{n+1}+\frac 1{n+2}+\cdots+\frac 1{2n}\right)\right) ... (1)
= lim 2 n 2 n ( B ( 1 2 n + 1 + 1 2 n + 2 + + 1 4 n ) ) =\displaystyle\lim_{2n\to\infty}2n\left(B-\left(\frac 1{2n+1}+\frac 1{2n+2}+\cdots+\frac 1{4n}\right)\right)
= lim n n ( 2 B ( 1 n + 0.5 + 1 n + 1 + 1 n + 1.5 + + 1 2 n ) ) =\displaystyle\lim_{n\to\infty}n\left(2B-\left(\frac 1{n+0.5}+\frac 1{n+1}+\frac1{n+1.5}+\cdots+\frac 1{2n}\right)\right) ... (2)
(1) + (1) - (2) = A = lim n n ( 1 n + 0.5 1 n + 1 + 1 n + 1.5 1 2 n ) =A=\displaystyle\lim_{n\to\infty}n\left(\frac 1{n+0.5}-\frac 1{n+1}+\frac1{n+1.5}-\cdots-\frac 1{2n}\right)
= lim n n ( 0.5 ( n + 0.5 ) ( n + 1 ) + 0.5 ( n + 1.5 ) ( n + 2 ) + + 0.5 ( 2 n 0.5 ) ( 2 n ) ) =\displaystyle\lim_{n\to\infty}n\left(\frac {0.5}{(n+0.5)(n+1)}+\frac {0.5}{(n+1.5)(n+2)}+\cdots+\frac {0.5}{(2n-0.5)(2n)}\right)
= 0.5 lim n n ( 1 ( n + 0.5 ) ( n + 1 ) + 1 ( n + 1.5 ) ( n + 2 ) + + 1 ( 2 n 0.5 ) ( 2 n ) ) =0.5\displaystyle\lim_{n\to\infty}n\left(\frac 1{(n+0.5)(n+1)}+\frac 1{(n+1.5)(n+2)}+\cdots+\frac 1{(2n-0.5)(2n)}\right)
= 0.5 lim n n ( 1 ( n + 1 ) 2 + 1 ( n + 2 ) 2 + + 1 ( 2 n ) 2 ) =0.5\displaystyle\lim_{n\to\infty}n\left(\frac 1{(n+1)^{2}}+\frac 1{(n+2)^2}+\cdots+\frac 1{(2n)^2}\right)
= 0.5 lim n 1 n ( n 2 ( n + 1 ) 2 + n 2 ( n + 2 ) 2 + + n 2 ( 2 n ) 2 ) =0.5\displaystyle\lim_{n\to\infty}\frac1{n}\left(\frac {n^2}{(n+1)^{2}}+\frac {n^2}{(n+2)^2}+\cdots+\frac {n^2}{(2n)^2}\right)
= 0.5 1 2 1 n 2 = 1 4 =0.5\displaystyle\int_{1}^{2}\frac{1}{n^2}=\frac{1}{4}



We get e B A = 16 {e}^{\frac BA}= \boxed{16}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...