Interesting logarithms - 2

Algebra Level pending

If the statements below are true for real number a a , b b , c c , d d , and x x

{ log a w = 15 log b w = 12 log c w = 20 log d w = 60 log a b c d x w = 60 13 \begin{cases} \begin{aligned} \log_aw&=15 \\ \log_bw&=12 \\ \log_cw&=20 \\ \log_dw&=60 \\ \log_{abcdx}w&=\dfrac{60}{13} \end{aligned} \end{cases}

Find log x w \log_xw .

Note:


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

James Watson
Jun 15, 2020

We can convert all of the logarithms into an exponential form:

a 15 = w a^{15}=w b 12 = w b^{12}=w c 20 = w c^{20}=w d 60 = w d^{60}=w a 60 13 b 60 13 c 60 13 d 60 13 x 60 13 = w a^{\frac{60}{13}}b^{\frac{60}{13}}c^{\frac{60}{13}}d^{\frac{60}{13}}x^{\frac{60}{13}}=w

We can also change the last one so that we can substitute w w :

a 60 13 b 60 13 c 60 13 d 60 13 x 60 13 = w ( a 15 ) 4 13 ( b 12 ) 5 13 ( c 20 ) 3 13 ( d 60 ) 1 13 x 60 13 = w a^{\frac{60}{13}}b^{\frac{60}{13}}c^{\frac{60}{13}}d^{\frac{60}{13}}x^{\frac{60}{13}}=w \Longrightarrow \left(a^{15}\right)^{\frac{4}{13}} \left(b^{12}\right)^{\frac{5}{13}} \left(c^{20}\right)^{\frac{3}{13}} \left(d^{60}\right)^{\frac{1}{13}}x^{\frac{60}{13}}=w

We can substitute w w in now and it cleans itself up:

( a 15 ) 4 13 ( b 12 ) 5 13 ( c 20 ) 3 13 ( d 60 ) 1 13 x 60 13 = w w 4 13 w 5 13 w 3 13 w 1 13 x 60 13 = w w x 60 13 = w \left(a^{15}\right)^{\frac{4}{13}} \left(b^{12}\right)^{\frac{5}{13}} \left(c^{20}\right)^{\frac{3}{13}} \left(d^{60}\right)^{\frac{1}{13}}x^{\frac{60}{13}}=w \Longrightarrow w^{\frac{4}{13}} w^{\frac{5}{13}} w^{\frac{3}{13}} w^{\frac{1}{13}}x^{\frac{60}{13}}=w \Longrightarrow wx^{\frac{60}{13}}=w

Once we solve for x we get:

w x 60 13 = w x 60 13 = 1 x = 1 wx^{\frac{60}{13}}=w \Longrightarrow x^{\frac{60}{13}}=1 \Longrightarrow x=1

Using this knowledge, we see that l o g x w log_xw is undefined because taking l o g 1 n , n 1 log_1n, n\neq1 is impossible and if n = 1 n=1 there is infinite answers

Zakir Husain
Jun 15, 2020

Applying this formula log x w = 1 1 60 13 × ( 1 15 + 1 12 + 1 20 + 1 60 ) = 1 1 60 13 × ( 13 60 ) = 1 0 \log_xw=\frac{1}{1-\frac{60}{13}\times(\frac{1}{15}+\frac{1}{12}+\frac{1}{20}+\frac{1}{60})}=\frac{1}{1-\frac{60}{13}\times(\frac{13}{60})}=\frac{1}{0} The value we find is undefined hence the answer is not possible

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...