You skipped four

Algebra Level 4

a + b + c = 1 a 2 + b 2 + c 2 = 2 a 3 + b 3 + c 3 = 3 a 5 + b 5 + c 5 = ? \begin{array} { l l l l l l l l l } a & + & b & + & c & = & 1 \\ a^2 & + & b^2 & + & c^2 & = & 2 \\ a^3 & + & b^3 & + & c^3 & = & 3 \\ a^5 & + & b^5 & + & c^5 & = & ? \\ \end{array}


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Bhargav Pavuluri
Sep 1, 2015

Newton’s Sum is a much easier and shorter way. Let us consider a polynomial P ( x ) = x 3 + k x 2 + l x + m which have a,b,c as its roots and S n = a n + b n + c n By Newton’s Identities: ( 1 ) S 1 + k = 0 k = 1 ( 1 ) S 2 + ( k ) S 1 + 2 l = 0 l = 1 2 ( 1 ) S 3 + ( k ) S 2 + ( l ) S 1 + 3 m = 0 m = 1 6 Therefore, P ( x ) = x 3 x 2 1 2 x 1 6 ( 1 ) S 4 + ( 1 ) S 3 + ( 1 2 ) S 2 + ( 1 6 ) S 1 = 0 S 4 = 25 6 ( 1 ) S 5 + ( 1 ) S 4 + ( 1 2 ) S 3 + ( 1 6 ) S 2 = 0 S 5 = 6 \text{Newton's Sum is a much easier and shorter way.} \\ \text{Let us consider a polynomial } P(x)=x^{3}+kx^{2}+lx+m \text{ which have a,b,c as its roots and } S_{n}=a^{n}+b^{n}+c^{n} \\ \text{ By Newton's Identities:} \\ (1)S_{1}+k=0\Rightarrow k=-1 \\ (1)S_{2}+(k)S_{1}+2l=0\Rightarrow l=-\frac{1}{2} \\ (1)S_{3}+(k)S_{2}+(l)S_{1}+3m=0\Rightarrow m=-\frac{1}{6} \\ \text{Therefore, }P(x)=x^{3}-x^{2}-\frac{1}{2}x-\frac{1}{6} \\ (1)S_{4}+(-1)S_{3}+\left(-\frac{1}{2}\right)S_{2}+\left(-\frac{1}{6}\right)S_{1}=0\Rightarrow S_{4}=\frac{25}{6} \\ (1)S_{5}+(-1)S_{4}+\left(-\frac{1}{2}\right)S_{3}+\left(-\frac{1}{6}\right)S_{2}=0\Rightarrow S_{5}=\boxed{6}

Akshat Sharda - 5 years, 8 months ago

Ya i agree by newton sums it is only pf 3 min

Mohit Gupta - 5 years, 8 months ago
Devansh Shah
Nov 7, 2015

Multiply first and second equation and separate out the expression of who h you want to find out value on one side of equation. Now get value of cyclic summation of xy and value of xyz from first 2 equations to get answer as 6

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...