Interesting Pattern?

Algebra Level 2

If a + b = 1 a + b = 1 ,

and a 2 + b 2 = 2 a^2 + b^2 = 2 ,

then what is a 3 + b 3 a^3 + b^3 ?

4 1.5 3 2 2.5 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jordan Cahn
Oct 16, 2018

First, ( a + b ) 2 = a 2 + 2 a b + b 2 1 = 2 + 2 a b 1 2 = a b \begin{aligned} (a+b)^2 &= a^2 +2ab + b^2 \\ 1 &= 2 + 2ab \\ -\frac{1}{2} &= ab \end{aligned}

Using this fact, ( a + b ) 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 1 = a 3 + b 3 + 3 a b ( a + b ) 1 = a 3 + b 3 3 2 5 2 = a 3 + b 3 \begin{aligned} (a+b)^3 &= a^3 + 3a^2b + 3ab^2 + b^3 \\ 1 &= a^3 + b^3 + 3ab(a+b) \\ 1 &= a^3 + b^3 -\frac{3}{2} \\ \frac{5}{2} &= a^3 + b^3 \end{aligned}

So a 3 + b 3 = 5 2 = 2.5 a^3+b^3 = \frac{5}{2} = \boxed{2.5} .

You can use a 3 + b 3 = ( a + b ) ( a 2 a b + b 2 ) a^3+b^3=(a+b)(a^2-ab+b^2)

X X - 2 years, 7 months ago

Log in to reply

That would work too!

Jordan Cahn - 2 years, 7 months ago

And we can generate higher power sums using

a 2 n + b 2 n = ( a n + b n ) 2 2 × ( 1 2 ) n a^{2n} + b^{2n} = (a^{n} + b^{n})^{2} - 2 \times \left(-\dfrac{1}{2}\right)^{n} and

a 2 n + 1 + b 2 n + 1 = ( a n + b n ) ( a n + 1 + b n + 1 ) ( 1 2 ) n a^{2n + 1} + b^{2n + 1} = (a^{n} + b^{n})(a^{n + 1} + b^{n + 1}) - \left(-\dfrac{1}{2}\right)^{n} .

Brian Charlesworth - 2 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...