Function machine-2

Algebra Level 3

For f ( x ) = 4 x 4 x + 2 f(x)=\dfrac{4^x}{4^x+2} ,

f ( 1 n ) + f ( 2 n ) + f ( 3 n ) + + f ( n 2 n ) + f ( n 1 n ) = 2019 f\left(\frac{1}{n}\right)+f \left(\frac{2}{n}\right)+f\left(\frac{3}{n}\right)+\cdots+f \left(\frac{n-2}{n}\right)+f\left(\frac{n-1}{n}\right)=2019

Find n n .


The answer is 4039.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 14, 2019

For f ( x ) = 4 x 4 x + 2 f(x) = \dfrac {4^x}{4^x +2} , then

f ( 1 x ) = 4 1 x 4 1 x + 2 Multiply up and down by 4 x = 4 4 + 2 ( 4 x ) Divide up and down by 2 = 2 2 + 4 x f ( x ) + f ( 1 x ) = 4 x 4 x + 2 + 2 2 + 4 x = 1 \begin{aligned} f(1-x) & = \frac {4^{1-x}}{4^{1-x} +2} & \small \blue{\text{Multiply up and down by }4^x} \\ & = \frac 4{4 +2(4^x)} & \small \blue{\text{Divide up and down by }2} \\ & = \frac 2{2 +4^x} \\ \implies f(x) + f(1-x) & = \frac {4^x}{4^x +2} + \frac 2{2 +4^x} = 1 \end{aligned}

Then we have:

f ( 1 n ) + f ( 2 n ) + + f ( n 2 n ) + f ( n 1 n ) = 2019 f ( 1 n ) + f ( 2 n ) + + f ( 1 2 n ) + f ( 1 1 n ) = 2019 \begin{aligned} f \left(\frac 1n\right) + f \left(\frac 2n\right) + \cdots + f \left(\frac {n-2}n\right) + f \left(\frac {n-1}n\right) & = 2019 \\ \implies \blue{f \left(\frac 1n\right)} + \red{f \left(\frac 2n\right)} + \cdots + \red{f \left(1-\frac 2n\right)} + \blue{f \left(1-\frac 1n\right)} & = 2019 \end{aligned}

Since f ( k n ) + f ( 1 k n ) = 1 f\left(\frac kn\right) + f\left(1-\frac kn\right) = 1 , there are 2019 f ( k n ) f\left(\frac kn\right) - f ( n k n ) f\left(\frac {n-k}n\right) pairs. That is 4038 f ( ) f(\cdot) terms or n 1 = 4038 n = 4039 n-1 = 4038 \implies n = \boxed{4039} .

Patrick Corn
Nov 14, 2019

We can rewrite f ( x ) = 1 1 4 x 1 / 2 + 1 , f(x) = 1 - \frac1{4^{x-1/2} + 1}, so we have i = 1 n 1 ( 1 1 4 i / n 1 / 2 + 1 ) = 2019 n 1 i = 1 n 1 1 4 i / n 1 / 2 + 1 = 2019 i = 1 n 1 1 4 i / n 1 / 2 + 1 = n 2020 \begin{aligned} \sum_{i=1}^{n-1} \left( 1 - \frac1{4^{i/n-1/2} + 1} \right) &= 2019 \\ n -1 - \sum_{i=1}^{n-1} \frac1{4^{i/n-1/2} + 1} &= 2019 \\ \sum_{i=1}^{n-1} \frac1{4^{i/n-1/2} + 1} &= n - 2020 \end{aligned} Let a i = i n 1 2 a_i = \frac{i}{n} - \frac12 be the exponent of 4 4 in the above sum. Now the key observation is that a i = a n i , a_i = -a_{n-i}, and 1 4 a i + 1 + 1 4 a n i + 1 = 1 4 a i + 1 + 1 4 a i + 1 = 1. \frac1{4^{a_i}+1} + \frac1{4^{a_{n-i}} + 1} = \frac1{4^{a_i}+1} + \frac1{4^{-a_i} + 1} = 1. Using the substitution i n i i \mapsto n-i (which runs over the terms of the sum in reverse order), we can write i = 1 n 1 1 4 a i + 1 = n 2020 i = 1 n 1 1 4 a n i + 1 = n 2020 \begin{aligned} \sum_{i=1}^{n-1} \frac1{4^{a_i} + 1} &= n - 2020 \\ \sum_{i=1}^{n-1} \frac1{4^{a_{n-i}} + 1} &= n - 2020 \end{aligned} and adding these two equations gives i = 1 n 1 1 = 2 n 4040 n 1 = 2 n 4040 n = 4039 \begin{aligned} \sum_{i=1}^{n-1} 1 &= 2n-4040 \\ n-1 &= 2n-4040 \\ n &= \fbox{4039} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...