Interesting problem

Algebra Level 4

1 + 1 1 2 + 1 2 2 + 1 + 1 2 2 + 1 3 2 + 1 + 1 3 2 + 1 4 2 + + 1 + 1 201 4 2 + 1 201 5 2 \sqrt{1+\frac 1{1^2} + \frac 1{2^2}} + \sqrt{1+\frac 1{2^2} + \frac 1{3^2}} + \sqrt{1+\frac 1{3^2} + \frac 1{4^2}} + \cdots + \sqrt{1+\frac 1{2014^2} + \frac 1{2015^2}}

If the sum above can be expressed as a b c \dfrac {ab}c , where a a , b b and c c are positive integers with a b ab and c c being coprime integers and a = b + 2 a = b+2 . Find a + b + c a+b+c .


The answer is 6045.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

S = n = 1 2014 1 + 1 n 2 + 1 ( n + 1 ) 2 = n = 1 2014 k 2 ( k + 1 ) 2 + ( k + 1 ) 2 + k 2 k 2 ( k + 1 ) 2 = n = 1 2014 k 4 + 2 k 3 + 3 k 2 + 2 k + 1 k 2 ( k + 1 ) 2 = n = 1 2014 ( k 2 + k + 1 ) 2 k 2 ( k + 1 ) 2 = n = 1 2014 k 2 + k + 1 k ( k + 1 ) = n = 1 2014 ( 1 + 1 k ( k + 1 ) ) = n = 1 2014 ( 1 + 1 k 1 k + 1 ) = 2014 + 1 1 1 2015 = 201 5 2 1 2015 = ( 2015 + 1 ) ( 2015 1 ) 2015 = 2016 2014 2015 \begin{aligned} S & = \sum_{n=1}^{2014} \sqrt{1 + \frac 1{n^2} + \frac 1{(n+1)^2}} \\ & = \sum_{n=1}^{2014} \sqrt{\frac {k^2(k+1)^2+(k+1)^2+k^2}{k^2(k+1)^2}} \\ & = \sum_{n=1}^{2014} \sqrt{\frac {k^4+2k^3+3k^2+2k+1}{k^2(k+1)^2}} \\ & = \sum_{n=1}^{2014} \sqrt{\frac {(k^2+k+1)^2}{k^2(k+1)^2}} \\ & = \sum_{n=1}^{2014} \frac {k^2+k+1}{k(k+1)} \\ & = \sum_{n=1}^{2014} \left(1+\frac 1{k(k+1)}\right) \\ & = \sum_{n=1}^{2014} \left(1+\frac 1k - \frac 1{k+1}\right) \\ & = 2014 + \frac 11 - \frac 1{2015} \\ & = \frac {2015^2-1}{2015} \\ & = \frac {(2015+1)(2015-1)}{2015} \\ & = \frac {2016\cdot2014}{2015} \end{aligned}

a + b + c = 2016 + 2014 + 2015 = 6045 \implies a+b+c = 2016+2014+2015 = \boxed{6045}

Aareyan Manzoor
Jan 31, 2015

s can be written as n = 1 2014 1 + 1 n 2 + 1 ( n + 1 ) 2 \sum_{n=1}^{2014} \sqrt{1+\dfrac{1}{n^2}+\dfrac{1}{(n+1)^2}} upon some expanding 1 + 1 n 2 + 1 ( n + 1 ) 2 = ( n 2 + n ) 2 + ( n + 1 ) 2 + n 2 ( n 2 + n ) 2 = ( n 2 + n ) 2 + ( n + 1 ) 2 + n 2 n 2 + n \sqrt{1+\dfrac{1}{n^2}+\dfrac{1}{(n+1)^2}}= \sqrt{\dfrac{(n^2+n)^2+(n+1)^2+n^2}{(n^2+n)^2}}=\dfrac{\sqrt{(n^2+n)^2+(n+1)^2+n^2}}{n^2+n} upon more expnding ( n 2 + n ) 2 + ( n + 1 ) 2 + n 2 = n 4 + 2 n 3 + 3 n 2 + 2 n + 1 \sqrt{(n^2+n)^2+(n+1)^2+n^2}=\sqrt{n^4+2n^3+3n^2+2n+1} what a symmetry. now lets see a chart of some expansions we can see the symmetry for any such expansion. it could easily be proved why. so,we find that n 4 + 2 n 3 + 3 n 2 + 2 n + 1 = n 2 + n + 1 \sqrt{n^4+2n^3+3n^2+2n+1}=n^2+n+1 now plug this in the original expression to get ( n 2 + n ) 2 + ( n + 1 ) 2 + n 2 n 2 + n = n 2 + n + 1 n 2 + n \dfrac{\sqrt{(n^2+n)^2+(n+1)^2+n^2}}{n^2+n}=\dfrac{n^2+n+1}{n^2+n} expand n 2 + n + 1 n 2 + n = 1 + 1 n 2 + n = 1 + 1 n 1 n + 1 \dfrac{n^2+n+1}{n^2+n}=1+\dfrac{1}{n^2+n}=1+\dfrac{1}{n}-\dfrac{1}{n+1} take this back to the summation to get n = 1 2014 ( 1 + 1 n 1 n + 1 ) \sum_{n=1}^{2014} (1+\dfrac{1}{n}-\dfrac{1}{n+1}) write it as n = 1 2014 ( 1 ) + n = 1 2014 ( 1 n ) n = 1 2014 ( 1 n + 1 ) \sum_{n=1}^{2014}(1)+\sum_{n=1}^{2014}(\dfrac{1}{n})-\sum_{n=1}^{2014}(\dfrac{1}{n+1}) it becomes 2014 + ( 1 + 1 2 + 1 3 . . . . . . + 1 2013 + 1 2014 ) ( 1 2 + 1 3 . . . . . . . + 1 2014 + 1 2015 ) 2014+(1+\dfrac{1}{2}+\dfrac{1}{3}...... +\dfrac{1}{2013}+\dfrac{1}{2014})-(\dfrac{1}{2}+\dfrac{1}{3}.......+\dfrac{1}{2014}+\dfrac{1}{2015}) after massive cancellation,it becomes 2014 + 1 1 2015 = 2015 1 2015 = 201 5 2 1 2015 2014+1-\dfrac{1}{2015}=2015-\dfrac{1}{2015}=\dfrac{2015^2 -1}{2015} using the identity a 2 b 2 = ( a + b ) ( a b ) a^2-b^2=(a+b)(a-b) 201 5 2 1 2015 = 2014 × 2016 2015 \dfrac{2015^2-1}{2015}=\dfrac{2014\times 2016}{2015} and 2014 + 2016 + 2015 = 3 × 2015 = 6045 2014+2016+2015=3\times 2015=6045

Thanx bro that table is really helpful.

Utkarsh Dwivedi - 4 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...