Interesting ratio

Algebra Level 4

A = n = 0 1000 exp ( ( 1000 n ) ) B = exp ( 3 n = 0 333 ( 999 3 n ) ) A = \prod_{n = 0}^{1000}{\exp \left({\binom{1000}{n}} \right)} \ \quad \quad B = \ \exp{\left( 3 \sum^{333}_{n=0}\binom{999}{3n} \right) }

If A B = e a + c \dfrac{A}{B} = e^{a+c} , where a a is of the form d b d^b , where c c , d d , and b b are integers and d d is prime. Find c + d + b c+d+b .

504 1003 1000 -1003 -504 -1000 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 16, 2017

A = n = 0 1000 exp ( 1000 n ) = exp n = 0 1000 ( 1000 n ) = exp ( 2 1000 ) B = exp ( 3 n = 0 333 ( 999 3 n ) ) = exp ( 2 999 2 ) See note. A B = exp ( 2 1000 2 999 + 2 ) = exp ( 2 999 + 2 ) \begin{aligned} A & = \prod_{n=0}^{1000} \exp \dbinom {1000}n = \exp \sum_{n=0}^{1000} \binom{1000}n = \exp \left(2^{1000}\right) \\ B & = \exp \left( 3 \sum_{n=0}^{333} \binom {999}{3n} \right) = \exp \left(2^{999}-2 \right) & \small \color{#3D99F6} \text{See note.} \\ \frac AB & = \exp \left(2^{1000} - 2^{999} + 2 \right) = \exp \left(2^{999}+2\right) \end{aligned}

c + d + b = 2 + 999 + 2 = 1003 \implies c+d+b = 2+999+2 = \boxed{1003}


Note:

( 1 + 1 ) 3 n = 1 + ( 3 n 1 ) + ( 3 n 2 ) + ( 3 n 3 ) + + ( 3 n 3 n ) ( 1 + ω ) 3 n = 1 + ( 3 n 1 ) ω + ( 3 n 2 ) ω 2 + ( 3 n 3 ) + + ( 3 n 3 n ) ω is the third root of unity. ( 1 + ω 2 ) 3 n = 1 + ( 3 n 1 ) ω 2 + ( 3 n 2 ) ω + ( 3 n 3 ) + + ( 3 n 3 n ) Note that 1 + ω + ω 2 = 0 2 3 n + ( 1 + ω ) 3 n + ( 1 + ω 2 ) 3 n = 3 + 3 ( 3 n 3 ) + 3 ( 3 n 6 ) + 3 ( 3 n 9 ) + + 3 ( 3 n 3 n ) 2 3 n + ( ω 2 ) 3 n + ( ω ) 3 n = 3 k = 0 3 n ( 3 n 3 k ) 3 k = 0 3 n ( 3 n 3 k ) = 2 3 n 2 \small \begin{aligned} (1+1)^{3n} & = 1 + \binom {3n}1 + \binom {3n}2 + \binom {3n}3 + \cdots + \binom {3n}{3n} \\ (1+\omega)^{3n} & = 1 + \binom {3n}1 \omega + \binom {3n}2 \omega^2 + \binom {3n}3 + \cdots + \binom {3n}{3n} & \color{#3D99F6} \omega \text{ is the third root of unity.} \\ (1+\omega^2)^{3n} & = 1 + \binom {3n}1 \omega^2 + \binom {3n}2 \omega + \binom {3n}3 + \cdots + \binom {3n}{3n} & \color{#3D99F6} \text{Note that }1+\omega + \omega^2 = 0 \\ 2^{3n} + (1+\omega)^{3n} + (1+\omega^2)^{3n} & = 3 + 3 \binom {3n}3 + 3 \binom {3n}6 + 3\binom {3n}9 + \cdots + 3\binom {3n}{3n} \\ 2^{3n} + (-\omega^2)^{3n} + (-\omega)^{3n} & = 3 \sum_{k=0}^{3n} \binom {3n}{3k} \\ \implies 3 \sum_{k=0}^{3n} \binom {3n}{3k} & = 2^{3n} - 2 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...