If , where is of the form , where , , and are integers and is prime. Find .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
A B B A = n = 0 ∏ 1 0 0 0 exp ( n 1 0 0 0 ) = exp n = 0 ∑ 1 0 0 0 ( n 1 0 0 0 ) = exp ( 2 1 0 0 0 ) = exp ( 3 n = 0 ∑ 3 3 3 ( 3 n 9 9 9 ) ) = exp ( 2 9 9 9 − 2 ) = exp ( 2 1 0 0 0 − 2 9 9 9 + 2 ) = exp ( 2 9 9 9 + 2 ) See note.
⟹ c + d + b = 2 + 9 9 9 + 2 = 1 0 0 3
Note:
( 1 + 1 ) 3 n ( 1 + ω ) 3 n ( 1 + ω 2 ) 3 n 2 3 n + ( 1 + ω ) 3 n + ( 1 + ω 2 ) 3 n 2 3 n + ( − ω 2 ) 3 n + ( − ω ) 3 n ⟹ 3 k = 0 ∑ 3 n ( 3 k 3 n ) = 1 + ( 1 3 n ) + ( 2 3 n ) + ( 3 3 n ) + ⋯ + ( 3 n 3 n ) = 1 + ( 1 3 n ) ω + ( 2 3 n ) ω 2 + ( 3 3 n ) + ⋯ + ( 3 n 3 n ) = 1 + ( 1 3 n ) ω 2 + ( 2 3 n ) ω + ( 3 3 n ) + ⋯ + ( 3 n 3 n ) = 3 + 3 ( 3 3 n ) + 3 ( 6 3 n ) + 3 ( 9 3 n ) + ⋯ + 3 ( 3 n 3 n ) = 3 k = 0 ∑ 3 n ( 3 k 3 n ) = 2 3 n − 2 ω is the third root of unity. Note that 1 + ω + ω 2 = 0