Interesting Series Challenge!

Calculus Level 2

Find the sum of the following infinite series-

1 8 + 1 24 + 1 48 + 1 80 + \frac{1}{8}+\frac{1}{24}+\frac{1}{48}+\frac{1}{80}+\ldots

Hint - Find a pattern between the numbers 1 8 , 1 24 , 1 48 \frac{1}{8},\frac{1}{24},\frac{1}{48}\ldots

1 1 / 2 1/2 None of these 1 / 4 1/4 1 / 3 1/3 1 / 5 1/5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Naren Bhandari
May 3, 2018

S = 1 8 + 1 24 + 1 48 + 1 80 + 1 120 = 1 8 ( 1 + 1 3 + 1 6 + 1 10 + ) S = 1 8 ( 1 + 1 1 + 2 + 1 1 + 2 + 3 + 1 1 + 2 + 3 + 4 + 1 1 + 2 + + 5 ) S = 1 8 n = 1 ( 2 n ( n + 1 ) ) = 2 8 n = 1 ( 1 n 1 n + 1 Telescoping sum ) = 1 8 × 2 = 1 4 \small { S = \dfrac{1}{8} + \dfrac{1}{24} + \dfrac{1}{48} + \dfrac{1}{80} +\dfrac{1}{120} \cdots = \dfrac{1}{8}\left(1 + \dfrac{1}{3} + \dfrac{1}{6} + \dfrac{1}{10} + \cdots\right) \\ S = \dfrac{1}{8}\left(1 + \dfrac{1}{1+2} + \dfrac{1}{1+2+3} + \dfrac{1}{1+2+3+4} + \dfrac{1}{1+2+\cdots +5 } \cdots\right) \\ S = \dfrac{1}{8} \sum_{n=1}^{\infty} \left(\dfrac{2}{n(n+1)}\right) = \dfrac{2}{8} \sum_{n=1}^{\infty}\left(\underbrace{\dfrac{1}{n} - \dfrac{1}{n+1}}_{\text{Telescoping sum}} \right) = \dfrac{1}{8}\times 2 =\dfrac{1}{4}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...