The polynomial P ( z ) ≡ z n + 1 − 1 has roots 1 , α , α 2 … , α n , where α is a complex ( n + 1 ) th root of unity.
What is the value of 1 − α 2 + 1 − α 2 2 + 1 − α 3 2 + ⋯ + 1 − α n 2 ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Can you explain why z=-1 when n is odd? Great solution.
Log in to reply
Because if n is odd, n+1 is even, and for all even polynomials of unity, -1,1 are roots.
Let's do it like little Gauss, taking the sum twice and dividing by two: ∑ k = 1 n ( 1 − α k 1 + 1 − α n + 1 − k 1 ) = ∑ k = 1 n 1 − α k − α n + 1 − k + 1 1 − α n + 1 − k + 1 − α k = ∑ k = 1 n 1 = n . All we need is α k α n + 1 − k = α n + 1 = 1 .
This is just a refinement of Jack's "Method 2", of course, without having to deal with the even/odd cases.
@Jack Lam shouldn't in method 2 it be if n is odd then the terms perfectly match
Did it the same way as @Jack Lam (Method 1).....But for JEE Style, simply put n=1 and solve!!!
Problem Loading...
Note Loading...
Set Loading...
Method 1: Polynomial Transformation
By the method of transformation, P ( 1 − z 1 ) has roots 1 − α 1 , 1 − α 2 1 , 1 − α 3 1 , ⋯ , 1 − α n 1 .
P ( 1 − z 1 ) = ( 1 − z 1 ) n + 1 − 1 = 0 ⇒ ( z − 1 ) n + 1 − z n + 1 = 0
Expanding using the binomial theorem, the first three terms are:
− z n + 1 + z n + 1 − ( n + 1 ) z n + 2 ( n + 1 ) n z n − 1 + ⋯
So the equation with the desired roots is:
− ( n + 1 ) z n + 2 ( n + 1 ) n z n − 1 + ⋯ = 0
Using Vieta's Formulae, we have:
1 − α 2 + 1 − α 2 2 + 1 − α 3 2 + ⋯ + 1 − α n 2 = − 2 − ( n + 1 ) 2 ( n + 1 ) n = n
Method 2: Careful Summation
Consider the following result: 1 − β 2 + 1 − β 1 2 = 2
We also know α k α n + 1 − k = 1
Summing up the terms pairwise from end to end, we have:
1 − α 2 + 1 − α n 2 = 2 , 1 − α 2 2 + 1 − α n − 1 2 = 2 , ⋯
If n is even, then all the terms pair perfectly and we are done. The resultant sum is equal to n
If n is odd, there is the root z = − 1 , whose transformation is just 1 and we are done. The resultant sum is also equal to n .
Method 3: Calculus
Consider the natural logarithm of P ( z ) . By the fundamental theorem of algebra, we have:
lo g ( z n + 1 − 1 ) = lo g ( z − 1 ) + lo g ( z − α ) + ⋯ + lo g ( z − α n )
Differentiate both sides with respect to z , giving us:
z n + 1 − 1 ( n + 1 ) z n = z − 1 1 + z − α 1 + z − α 2 1 + ⋯ + z − α n 1
Subtract from both sides to place the common singularity of z = 1 on the left hand side.
z n + 1 − 1 ( n + 1 ) z n − z − 1 1 = z − α 1 + z − α 2 1 + ⋯ + z − α n 1
z n + 1 − 1 n z n − ( z n − 1 + z n − 2 + ⋯ + z + 1 ) = z − α 1 + z − α 2 1 + ⋯ + z − α n 1
Take the limit as z → 1 , allowing us to invoke L'Hôpital's rule. The limit can be directly applied to the sum without any problem.
1 − α 2 + 1 − α 2 2 + 1 − α 3 2 + ⋯ + 1 − α n 2 = 2 lim z → 1 z n + 1 − 1 n z n − ( z n − 1 + z n − 2 + ⋯ + z + 1 )
1 − α 2 + 1 − α 2 2 + 1 − α 3 2 + ⋯ + 1 − α n 2 = 2 lim z → 1 ( n + 1 ) z n n 2 z n − 1 − ( ( n − 1 ) z n − 2 + ( n − 2 ) z n − 3 + ⋯ + 2 z + 1 )
1 − α 2 + 1 − α 2 2 + 1 − α 3 2 + ⋯ + 1 − α n 2 = 2 n + 1 n 2 − ( ( n − 1 ) + ( n − 2 ) + ⋯ + 2 + 1 )
1 − α 2 + 1 − α 2 2 + 1 − α 3 2 + ⋯ + 1 − α n 2 = 2 n + 1 n 2 − 2 ( n − 1 ) n = n + 1 n 2 + n = n