Interesting Sum!

Calculus Level 3

2 k = 1 k 3 5 7 9 ( 2 k + 1 ) = ? \large 2 \sum_{k=1}^{\infty} \frac{k}{3 \cdot 5 \cdot 7 \cdot 9 \cdots (2k+1)} = \ ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

We can prove by induction that S n = k = 1 n k ( 2 k + 1 ) ! ! = ( 2 n + 1 ) ! ! 1 2 ( 2 n + 1 ) ! ! \displaystyle S_n = \sum_{k=1}^n \dfrac{k}{(2k+1)!!} = \dfrac{(2n+1)!!-1}{2(2n+1)!!} .

  • For n = 1 n=1 , S n = 3 ! ! 1 2 × 3 ! ! = 3 1 2 × 3 = 1 3 \displaystyle S_n = \dfrac{3!!-1}{2\times 3!!} = \dfrac{3-1}{2 \times 3} = \dfrac{1}{3} , which is true.
  • Assume that the formula is true for all n n .
  • Then for n + 1 n+1 , we have:

S n + 1 = S n + n + 1 ( 2 n + 3 ) ! ! = ( 2 n + 1 ) ! ! 1 2 ( 2 n + 1 ) ! ! + n + 1 ( 2 n + 3 ) ! ! = [ ( 2 n + 1 ) ! ! 1 ] ( 2 n + 3 ) + 2 ( n + 1 ) 2 ( 2 n + 3 ) ! ! = ( 2 n + 3 ) ! ! 2 n 3 + 2 n + 2 2 ( 2 n + 3 ) ! ! = [ 2 ( n + 1 ) + 1 ] ! ! 1 2 [ 2 ( n + 1 ) + 1 ] ! ! , which is true. \begin{aligned} \quad \quad S_{n+1} & = S_n + \frac{n+1}{(2n+3)!!}\\ & = \frac{(2n+1)!!-1}{2(2n+1)!!} + \frac{n+1}{(2n+3)!!} \\ & = \frac{[(2n+1)!!-1](2n+3) + 2(n +1) }{2(2n+3)!!} \\ & = \frac{(2n+3)!!-2n-3 + 2n +2 }{2(2n+3)!!} \\ & = \frac{[2(n+1)+1]!!-1}{2[2(n+1)+1]!!} \text{, which is true.} \quad \blacksquare \end{aligned}

Therefore,

S n = ( 2 n + 1 ) ! ! 1 2 ( 2 n + 1 ) ! ! S = lim n ( 2 n + 1 ) ! ! 1 2 ( 2 n + 1 ) ! ! = lim n ( 1 2 1 2 ( 2 n + 1 ) ! ! ) = 1 2 2 S = 1 \begin{aligned} S_n & = \frac{(2n+1)!!-1}{2(2n+1)!!} \\ \Rightarrow S_\infty & = \lim_{n \to \infty} \frac{(2n+1)!!-1}{2(2n+1)!!} = \lim_{n \to \infty} \left(\frac{1}{2}- \frac{1}{2(2n+1)!!}\right) = \frac{1}{2} \\ \Rightarrow 2 S_\infty & = \boxed{1} \end{aligned}

Cool. Nicely done :)

chandrasekhar S - 5 years, 5 months ago
Sumanth R Hegde
Mar 2, 2017

Consider a sequence T 0 , T 1 , T 2 , . . . . . . . . . T k T_0 ,T_1 , T_2, ......... T_k given by

T k = 1 1 3 5 7 . . . . . . . . . . . ( 2 k + 1 ) T_k = \dfrac{1}{1 \cdot 3 \cdot 5 \cdot 7 \cdot...........(2k +1) }

Notice that the given summation S S is k = 1 U k \displaystyle \sum_{k=1}^{ \infty}U_k where

U k = T k 1 T k U_k = T_{k-1} - T_{k}

Thus S = k = 1 ( T k 1 T k ) \displaystyle S = \sum_{k=1}^{ \infty} {(T_{k-1} - T_{k})}

S = ( T 0 T 1 ) + ( T 1 T 2 ) + ( T 2 T 3 ) . . . . . . . . . . . . . \implies S = ( T_0 - T_1 )+ ( T_1 - T_2 ) + (T_2 - T_3 ).............

Also, lim n T n = 0 \displaystyle \lim_{n \rightarrow \infty }{ T_n } = 0

S = T 0 = 1 \implies \color{#3D99F6}{S = T_0 = 1 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...