Interesting Summation!

Calculus Level 3

Evaluate the sum where x x is a real number such that x < 1 \left|x\right|<1

n = 1 ( 1 ) n 1 n ( ln ( 1 x ) + x + x 2 2 + x 3 3 + . . . + x n n ) \sum_{n=1}^{\infty}\left(-1\right)^{n-1}n\left(\ln\left(1-x\right)+x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+.\ .\ .\ +\frac{x^{n}}{n}\right)

If the value of the sum when x = 1 2 x=\frac{1}{2} is of the form a b ln c d \displaystyle \frac{a}{b}-\frac{\ln c}{d} where a a and b b are coprime positive integers and c c is prime, then find the value of a b c d abcd


The answer is 72.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Naren Bhandari
May 1, 2020

Nice problem and here is my solution

For x < 1 |x| < 1 , f ( x ) f(x) can be written as ln ( 1 x ) + k = 1 n x k k = k = 1 x k + n k + n = k = 1 0 x u k + n 1 d u = 0 x u n 1 u d u \displaystyle \ln(1-x)+\sum_{k=1}^{n}\frac{x^k}{k}=-\sum_{k=1}^{\infty} \frac{x^{k+n}}{k+n}=-\sum_{k=1}^{\infty}\int_0^x u^{k+n-1}du=-\int_0^x\frac{u^n}{1-u}du and hence we have n 1 ( 1 ) n 1 n f ( x ) = n 1 ( 1 ) n 1 n 0 x u n 1 u d u = 0 x d u 1 u ( n 1 ( 1 ) n 1 n u n ) = 0 x d u 1 u ( u d d u 1 ( 1 + u ) ) = 0 x u ( 1 u ) ( 1 + u ) 2 d u = I ( x ) -\sum_{n\geq 1}(-1)^{n-1} n f(x)=-\sum_{n\geq 1}(-1)^{n-1} n\int_0^x \frac{u^n}{1-u} du\\ =-\int_0^x\frac{du}{1-u}\left(\sum_{n\geq 1}\ (-1)^{n-1} n u^n \right)=-\int_0^x\frac{du}{1-u} \left( u\cdot \frac{d}{du}\frac{1}{(1+u)}\right)\\=\int_0^x\frac{-u}{(1-u)(1+u)^2} du =I(x) and hence we are left to evaluate I ( x ) = I(x)= . 0 x ( 1 ( 1 + u ) 2 1 ( 1 u ) ( 1 + u ) 2 ) d u \int_0^x\left(\frac{1}{(1+u)^2}-\frac{1}{(1-u)(1+u)^2}\right)du set x = 1 2 x=\frac{1}{2} and it's easy to integrate the above two integral ie 0 1 2 d u ( 1 + u ) 2 = 2 3 + 1 = 1 3 \int_0^{\frac{1}{2}}\frac{du}{(1+u)^2}=-\frac{2}{3}+1=\frac{1}{3} and on the similar way 0 1 2 d u ( 1 u ) ( 1 + u ) 2 = [ 1 4 ln ( 1 + u 1 u ) + 1 2 ( 1 + u ) ] 0 1 2 = 1 4 ln 3 + 1 6 \int_0^{\frac{1}{2}}\frac{du}{(1-u)(1+u)^2}=\left[\frac{1}{4}\ln\left(\frac{1+u}{1-u}\right)+\frac{1}{2(1+u)}\right]_0^{\frac{1}{2}}=\frac{1}{4}\ln3+\frac{1}{6} and hence we have I ( 2 1 ) = 1 3 ( 1 6 + 1 4 ln 3 ) = 1 6 1 4 ln 3 I(2^{-1})=\frac{1}{3}-\left(\frac{1}{6}+\frac{1}{4}\ln 3 \right)=\frac{1}{6}-\frac{1}{4}\ln 3 making our required answer a b c d = 72 abcd=72

Thanks for the solution!

Aaghaz Mahajan - 1 year, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...