Interesting Trigonometry!!

Algebra Level 5

If α \alpha , β \beta , and γ \gamma are acute angles, and

{ cos θ = sin β sin α cos φ = sin γ sin α cos ( θ φ ) = sin β sin γ \begin{cases} \cos \theta =\dfrac { \sin \beta}{ \sin \alpha} \\ \cos \varphi =\dfrac {\sin\gamma}{\sin \alpha} \\ \cos (\theta -\varphi) = \sin \beta \sin \gamma \end{cases}

find the value of tan 2 α tan 2 β tan 2 γ \tan ^{ 2 }{ \alpha } -\tan ^{ 2 }{ \beta } -\tan ^{ 2 }{ \gamma } .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

De Silva
Jan 9, 2015

cos θ = sin B / sin a cos p = sin r/ sin a

sin θ = ( sin^2 a - sin^ B )^0.5 / sin a sin p = ( sin^2 a - sin^ r )^0.5 / sin a

cos ( θ- p ) = sin B . sin r

cos θ . cos p + sin θ . sin p = sin B . sin r

[ sin B / sin a ] . [sin r/ sin a ] + [ ( sin^2 a - sin^2 B )^0.5 / sin a ] . [ ( sin^2 a - sin^2 r )^0.5 / sin a ] =sin B . sin r

sin B . sin r + [ ( sin^2 a - sin^2 B )^0.5 ] . [ ( sin^2 a - sin^2 r )^0.5 ] = sin B . sin r . ( sin^ 2 r)

-( cos^2 a) . sin B . sin r = [ ( sin^2 a - sin^2 B )^0.5 ] . [ ( sin^2 a - sin^2 r )^0.5 ]

  • sin B . sin r = { [ ( sin^2 a - sin^2 B ) / cos^2 a ]^0.5 } .{ [ ( sin^2 a - sin^2 r ) / cos^2 a ]^0.5 }

sin^2 B . sin^2 r = [ tan^2 a - ( sin^2 B / cos^2 a ) ] . [ tan^2 a - ( sin^2 r/ cos^2 a ) ]

sin^2 B . sin^2 r = [ tan^2 a - ( 1 + tan^2 a ) . sin^2 B ] . [ [ tan^2 a - ( 1 + tan^2 a ) . sin^2 r ]

sin^2 B . sin^2 r = ( tan^2 a . cos^2 B - sin^2 B ) . ( tan^2 a . cos^2 r - sin^2 r)

1 = { ( tan^2 a / tan^2 B ) - 1 } . { ( tan^2 a / tan^2 r ) - 1 }

tan^2 a . ( tan^2 r + tan^2 B ) = tan^4 a

As a is an acute angle , a is non equal to zero ...... so tan a is non equal to zero

tan^2 r + tan^2 B = tan^2 a

tan^2 a - tan^2 B - tan^2 r = 0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...