Intermediate integration

Calculus Level 3

Find the value of: 1000 0 π 2 sin x d x sin x + cos x \left\lfloor1000\int_0^{\frac\pi2}\frac{\sin x\mbox{ d}x}{\sin x+\cos x}\right\rfloor

Note : I take no credit.


The answer is 785.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kenny Lau
Jul 11, 2014

I = 0 π 2 sin x d x sin x + cos x I = π 2 0 sin ( 9 0 u ) d ( 9 0 u ) sin ( 9 0 u ) cos ( 9 0 u ) = 0 π 2 cos u d u sin u + cos u = 0 π 2 cos x d x sin x + cos x I = 1 2 ( 0 π 2 sin x d x sin x + cos x + 0 π 2 cos x d x sin x + cos x ) = 1 2 0 π 2 sin x + cos x sin x + cos x d x = 1 2 0 π 2 d x = π 4 \begin{array}{rcl} I&=&\int_0^{\frac\pi2}\frac{\sin x\mbox{ d}x}{\sin x+\cos x}\\ I&=&\int_{\frac\pi2}^0\frac{\sin(90^\circ-u)\mbox{ d}(90^\circ-u)}{\sin(90^\circ-u)\cos(90^\circ-u)}\\ &=&\int_0^{\frac\pi2}\frac{\cos u\mbox{ d}u}{\sin u+\cos u}\\ &=&\int_0^{\frac\pi2}\frac{\cos x\mbox{ d}x}{\sin x+\cos x}\\ I&=&\frac12\left(\int_0^{\frac\pi2}\frac{\sin x\mbox{ d}x}{\sin x+\cos x}+\int_0^{\frac\pi2}\frac{\cos x\mbox{ d}x}{\sin x+\cos x}\right)\\ &=&\frac12\int_0^{\frac\pi2}\frac{\sin x+\cos x}{\sin x+\cos x}\mbox{ d}x\\ &=&\frac12\int_0^{\frac\pi2}\mbox{ d}x\\ &=&\frac\pi4 \end{array}

Just a small addition: There is a property of definite integrals: 0 a f ( x ) d x = 0 a f ( a x ) d x \displaystyle \int \limits_0^a f(x) \text{d}x = \int \limits_0^a f(a-x) \text{d}x
It makes the steps 2 and 3 more elegant. :)

Otherwise, a nice solution!!

Sudeep Salgia - 6 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...