Intermediate sum

Algebra Level 2

Find the value of 4 + 4 2 + 4 3 + 4 4 + 4 5 + 4 6 + + 4 2018 1 0 1215 \dfrac{4+4^2+4^3+4^4+4^5+4^6+\dots+4^{2018}}{10^{1215}} and round the answer to the 4 t h 4^{th} decimal digit.


The answer is 1.2078.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jeremy Galvagni
Sep 20, 2018

There's no need to use anything fancier than a scientific calculator. Since we only want a limited precision, let's just use the last 8 terms (since the rest are insignificant) and write them as

( 4 + 4 2 + 4 3 + 4 4 + 4 5 + 4 6 + 4 7 + 4 8 ) + 4 2010 (4+4^{2}+4^{3}+4^{4}+4^{5}+4^{6}+4^{7}+4^{8})\cdot +4^{2010}

= 87380 4 2010 =87380\cdot 4^{2010}

The take a common logarithm to help put in scientific notation

log ( 87380 4 2010 ) = log 87380 + 2010 log 4 = 1215.81995 \log {(87380\cdot 4^{2010})}=\log {87380} + 2010 \log{4} = 1215.81995

The division just strips off the whole number part: 1215.81995 1215 = 0.81995 1215.81995-1215=0.81995

Leaving the answer as 1 0 0.81995 = 1.2077988 10^{0.81995}=\boxed{1.2077988}

Gia Hoàng Phạm
Sep 19, 2018

Let S = 4 + 4 2 + 4 3 + 4 4 + 4 5 + 4 6 + + 4 2018 S=4+4^2+4^3+4^4+4^5+4^6+\dots+4^{2018}

S = 4 + 4 2 + 4 3 + 4 4 + 4 5 + 4 6 + + 4 2018 4 S = 4 2 + 4 3 + 4 4 + 4 5 + 4 6 + + 4 2019 3 S = 4 4 2019 \begin{array}{cccc} S=4+4^2+4^3+4^4+4^5+4^6+\dots+4^{2018} \\ -4S=4^2+4^3+4^4+4^5+4^6+\dots+4^{2019}\\ \hline -3S=4-4^{2019} \end{array}

3 S = 4 4 2019 3 S = 4 2019 4 S = 4 2019 4 3 1.2078 × 1 0 1215 -3S=4-4^{2019} \implies 3S=4^{2019}-4 \implies S=\frac{4^{2019}-4}{3} \approx 1.2078 \times 10^{1215}

So 1.2078 × 1 0 1215 1 0 1215 = 1.2078 \frac{1.2078 \times 10^{1215}}{10^{1215}}=\boxed{\large{1.2078}}

Note

  • For every integer a 1 a \ne 1 of S = a + a 2 + a 3 + a 4 + a 5 + a 6 + + a n S=a+a^2+a^3+a^4+a^5+a^6+\dots+a^n that S = a n + 1 a a 1 S=\frac{a^{n+1}-a}{a-1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...