Inti....!

Calculus Level 3

Evaluate

0 π 2 d x 1 + ( a sin x ) 2 . \int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { dx }{ 1+{ (a\sin x) }^{ 2 } } } .

π 1 + a 2 \frac { \pi }{ \sqrt { 1+{ a }^{ 2 } } } 1 π 2 1 + a 2 \frac { \pi }{ 2\sqrt { 1+{ a }^{ 2 } } } 2 π 1 + a 2 \frac { 2\pi }{ \sqrt { 1+{ a }^{ 2 } } }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

U Z
Nov 12, 2014

0 π 2 d x 1 + ( a s i n x ) 2 \displaystyle \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + (asinx)^{2}}

0 π 2 s e c 2 x d x 1 + t a n 2 x + ( a t a n x ) 2 \displaystyle \int_{0}^{\frac{\pi}{2}} \frac{sec^{2}xdx}{1 + tan^{2}x + (atanx)^{2}}

0 π 2 s e c 2 x d x ( 1 + a 2 ) t a n 2 x + 1 \displaystyle \int_{0}^{\frac{\pi}{2}} \frac{sec^{2}xdx}{(1 + a^{2})tan^{2}x +1}

t a n x = t tanx = t

0 t d t ( 1 + a 2 ) t 2 + 1 \displaystyle \int_{0}^{\infty} \frac{tdt}{(1 + a^{2})t^{2} +1}

= 1 1 + a 2 [ 0 t a n 1 t ] = \frac{1}{\sqrt{1 + a^{2}}}[_{0}^{\infty}tan^{-1}t]

= 1 1 + a 2 π 2 = \frac{1}{\sqrt{1 + a^{2}}} \frac{\pi}{2}

Simple

Or else you can do is, put a=0 then integrate it :D

Prakhar Gupta
Nov 12, 2014

This one is not too difficult. Look we see that sin x \sin x has even power so the best way is to divide the numerator and denominator by cos 2 x \cos ^{2} x . Dividing we get:- 0 π 2 sec 2 x s e c 2 x + a 2 tan 2 x d x \int_{0}^{\dfrac{\pi}{2}} \dfrac{\sec^{2}x}{sec^{2}x+a^{2}\tan^{2}x}dx Now put t a n x = t tan x =t sec 2 x d x = d t \sec^{2} x dx = dt We will also change the limit

When x = 0 , t = 0 x=0, t=0

When x = π 2 , t = x=\dfrac{\pi}{2} , t=\infty

Now the integral becomes 0 1 1 + t 2 + a 2 t 2 d t \int_{0}^{\infty} \dfrac{1}{1+t^{2}+a^{2}t^{2}}dt = 1 1 + a 2 0 1 1 1 + a 2 + t 2 d t =\dfrac{1}{1+a^{2}}\int_{0}^{\infty} \dfrac{1}{\dfrac{1}{1+a^{2}}+t^{2}}dt We can solve this by standard methods of substitution of tan 1 x \tan^{-1}x . Hence the integral is solved as = [ 1 1 + a 2 tan 1 t 1 + a 2 ] 0 =\Big[\dfrac{1}{\sqrt{1+a^{2}}}\tan^{-1}\dfrac{t}{\sqrt{1+a^{2}}}\Big]_{0}^{\infty} Solving the limts we get the answer as = 1 1 + a 2 [ π 2 1 ] =\dfrac{1}{\sqrt{1+a^{2}}} \Big[\dfrac{\pi}{2}-1\Big] = π 2 1 + a 2 =\dfrac{\pi}{2\sqrt{1+a^{2}}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...