Intimidating at First

Calculus Level 4

Evaluate the following expression:

ln ( i = 1 0 x i 1 e x 2018 2018 [ ( i 1 ) ! ] 2 d x ) \large \ln \left(\sum_{i=1}^\infty\int_{0}^{\infty}\frac{x^{i-1}e^{-\frac{x}{2018}}}{2018[(i-1)!]^{2}}dx \right)


The answer is 2018.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Guilherme Niedu
Oct 15, 2018

S = ln [ i = 1 ( 0 x i 1 e x 2018 2018 [ ( i 1 ) ! ] 2 d x ) ] \large \displaystyle S = \ln \left [ \sum_{i=1}^{\infty} \left ( \int_0^{\infty} \frac{x^{i-1} e^{-\frac{x}{2018}} }{2018 [ (i-1)!]^2} dx \right ) \right ]

Let u = x 2018 u = \frac{x}{2018} :

S = ln [ i = 1 201 8 i 1 [ ( i 1 ) ! ] 2 ( 0 u i 1 e u d u ) ] \large \displaystyle S = \ln \left [ \sum_{i=1}^{\infty} \frac{2018^{i-1}}{[(i-1)!]^2} \color{#20A900} \left ( \int_0^{\infty} u^{i-1} e^{-u} du \right ) \color{#333333} \right ]

S = ln [ i = 1 201 8 i 1 [ ( i 1 ) ! ] 2 Γ ( i ) ] \large \displaystyle S = \ln \left [ \sum_{i=1}^{\infty} \frac{2018^{i-1}}{[(i-1)!]^2} \color{#20A900} \Gamma(i) \color{#333333} \right ]

S = ln [ i = 1 201 8 i 1 [ ( i 1 ) ! ] 2 ( i 1 ) ! ] \large \displaystyle S = \ln \left [ \sum_{i=1}^{\infty} \frac{2018^{i-1}}{[(i-1)!]^2} \color{#20A900} (i-1)! \color{#333333} \right ]

S = ln [ i = 1 201 8 i 1 ( i 1 ) ! ] \large \displaystyle S = \ln \left [ \sum_{i=1}^{\infty} \frac{2018^{i-1}}{(i-1)!} \right ]

Let k = i 1 k = i - 1 :

S = ln [ k = 0 201 8 k k ! ] \large \displaystyle S = \ln \left [ \sum_{k=0}^{\infty} \frac{2018^{k}}{k!} \right ]

S = ln [ e 2018 ] \large \displaystyle S = \ln \left [ e^{2018} \right ]

S = 2018 \color{#3D99F6} \boxed{ \large \displaystyle S = 2018}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...