Define S as
S = n = 1 ∑ ∞ n × 4 n ( n 2 n )
What is the value of e S ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice solution +1, but I did mine using generating functions so it can be more general ^^
Here's another way Let ( 1 + m x ) n = 1 + ∑ n = 1 ∞ 4 n ( 2 n n ) x n
comparing coefficents of x and x 2
mn=1/2 and m 2 n(n-1)/2=1.3/2.4
solving we get m=-1,n=-1/2,we can easily check if other terms are also as in the first expression
So ( 1 − x ) 1 / 2 1 = 1 + 4 1 ( 2 1 ) x + 4 2 ( 4 2 ) x 2 + . . . . .
Taking 1 to the other side , and dividing by x and then integrating from x=0 to x=1 we get,
∫ 0 1 x ( 1 − x ) 1 / 2 1 − x 1 d x = ∫ 0 1 4 1 ( 2 1 ) + 4 2 ( 4 2 ) x 1 + . . . . . d x
On performing this integration ,on we get,
l o g ( 4 ) = 4 1 ( 2 1 ) . 1 1 + 4 2 ( 4 2 ) . 2 1 + . . . . . which is equal to s
Hence e^s=4
Arey yaar! This is better. Shame that I don't know taylor series for negative or rational exponents :/
Log in to reply
Check out "Newton's Generalized Binomial theorem" here
In the series, ( 2 n n ) is the central binomial coefficient. However there are no exact formula of ( 2 n n ) , but we can use approximations. One good approximation is by using more terms in the Stirling series. We get
( 2 n n ) = π n 4 n ( 1 − 8 n 1 + 1 2 8 n 2 1 + 1 0 2 4 n 3 5 − 3 2 7 6 8 n 4 2 1 + O ( n − 5 ) )
where O ( n − 5 ) is the Big O notation. Then we have
s ∼ ∑ n = 1 ∞ n × 4 n π n 4 n ( 1 − 8 n 1 + 1 2 8 n 2 1 + 1 0 2 4 n 3 5 − 3 2 7 6 8 n 4 2 1 )
= ∑ n = 1 ∞ n π n 1 − 8 n 1 + 1 2 8 n 2 1 + 1 0 2 4 n 3 5 − 3 2 7 6 8 n 4 2 1
= π 1 ∑ n = 1 ∞ n n 1 − 8 n 1 + 1 2 8 n 2 1 + 1 0 2 4 n 3 5 − 3 2 7 6 8 n 4 2 1
= π 1 ( ∑ n = 1 ∞ n n 1 − 8 1 ∑ n = 1 ∞ n 2 n 1 + 1 2 8 1 ∑ n = 1 ∞ n 3 n 1 + 1 0 2 4 5 ∑ n = 1 ∞ n 4 n 1 − 3 2 7 6 8 2 1 ∑ n = 1 ∞ n 5 n 1 )
= π 1 ( ∑ n = 1 ∞ n 2 3 1 − 8 1 ∑ n = 1 ∞ n 2 5 1 + 1 2 8 1 ∑ n = 1 ∞ n 2 7 1 + 1 0 2 4 5 ∑ n = 1 ∞ n 2 9 1 − 3 2 7 6 8 2 1 ∑ n = 1 ∞ n 2 1 1 1 )
Applying Riemann zeta function, we get
= π 1 ( ζ ( 2 3 ) − 8 1 ζ ( 2 5 ) + 1 2 8 1 ζ ( 2 7 ) + 1 0 2 4 5 ζ ( 2 9 ) − 3 2 7 6 8 2 1 ζ ( 2 1 1 ) )
After evaluation, we get approximately s = 1 . 3 8 6 7 6 9 5 1 4 8 .
e s = 4 . 0 0 1 9 0 1 which is approximately 4
Problem Loading...
Note Loading...
Set Loading...
C o n s i d e r : I ( n ) = ∫ 0 2 π sin 2 n x d x ⇒ I ( n ) = 2 n 2 n − 1 I ( n − 1 ) , I ( 0 ) = 2 π ⇒ I ( n ) = ( 2 n ) ( 2 n − 2 ) ( 2 n − 4 ) . . . ( 2 ) ( 2 n − 1 ) ( 2 n − 3 ) ( 2 n − 5 ) . . . . ( 1 ) × 2 π ⇒ I ( n ) = ( 2 n n ) × 2 π × 2 − 2 n ⇒ n × 4 n ( 2 n n ) = π 2 ∫ 0 2 π n sin 2 n x d x C o n s i d e r : − lo g ( 1 − t ) = t + 2 t 2 + 3 t 3 + 4 t 4 + . . . ⇒ − lo g ( 1 − sin 2 t ) = sin 2 t + 2 ( sin 2 t ) 2 + 3 ( sin 2 t ) 3 + 4 ( sin 2 t ) 4 + . . . ⇒ ∑ n = 1 ∞ n × 4 n ( 2 n n ) = π 2 ∫ 0 2 π ( sin 2 t + 2 ( sin 2 t ) 2 + 3 ( sin 2 t ) 3 + 4 ( sin 2 t ) 4 + . . . ) d t ⇒ ∑ n = 1 ∞ n × 4 n ( 2 n n ) = S = π 2 ∫ 0 2 π − lo g ( 1 − sin 2 t ) d t ⇒ S = π 2 ∫ 0 2 π − 2 lo g ( cos t ) d t = lo g 4 ⇒ e S = 4